欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

R语言参数检验 :需要多少样本?如何选择样本数量

程序员文章站 2022-07-14 21:14:17
...

原文:http://tecdat.cn/?p=3719

 

参数检验受制于数据属性的假设。例如,学生t检验是众所周知的参数检验,假设样本均值具有正态分布。由于中心极限定理,如果样本量足够,测试也可以应用于非正态分布的测量。在这里,我们将研究t检验有效所需的大致样本数。

将正态分布拟合到采样均值

为了研究满足学生t检验要求所需的样本数量,我们迭代各种样本量。对于每个样本大小,我们从几个分布中抽取样本。然后,计算样本的平均值,并将正态分布拟合到平均值的分布。在每次迭代中,我们记录描述正态分布与采样均值拟合程度的对数似然。当对数似然变为正时,我们将考虑采样均值接近正态分布。

记录拟合的概率

调查结果,我们可以看到一些分布似乎比其他分布更快地接近正态分布:

<span style="color:#000000"><span style="color:#000000"><code>print(result)</code></span></span>
##   Sample_Size      Beta     Normal        Chi    Poisson   Student
## 1           5  694.9139 -299.81161 -496.33474 -702.94076 -1971.203
## 2          10  823.0384 -126.68806 -297.08253 -515.18702 -3806.447
## 3          15  909.4417  -30.63266 -199.77525 -455.64737 -2119.944
## 4          20 1045.1414   46.45709 -136.21868 -375.75690 -2263.025
## 5          50 1235.7655  278.66189   84.44694 -117.56140 -3427.721
## 6         100 1397.7265  443.81523  281.68706   47.87537 -2178.871
## 7        1000 1996.2198 1019.70692  845.26837  619.25871 -3636.674
## 8        5000 2398.4267 1402.41433 1260.47873 1018.24454 -3231.983

根据正对数似然,β分布产生的正态分布均值已经为5的样本大小。正态分布,卡方分布和泊松分布在样本大小分别为20,50和100时产生正态分布均值。最后,学生分布的方式永远不会正常,因为具有一个*度的分布具有无限的峰度(非常重的尾部),使得中心极限定理不成立。

验证对数似然标准

作为结果的验证,让我们绘制样本大小为5的直方图和平均分布变为正常的样本大小:

R语言参数检验 :需要多少样本?如何选择样本数量

<span style="color:#000000"><span style="color:#000000"><code>plot.means(norm.means)</code></span></span>

R语言参数检验 :需要多少样本?如何选择样本数量

这些结果表明对数似然准则是正态性的充分代理。但请注意,从目视检查来看,平均值的初始贝塔分布似乎不比正态分布更正常。所以这个结果可能是用一粒盐。看看学生的t分布,我们可以看出为什么它的手段不是正态分布的:

<span style="color:#000000"><span style="color:#000000"><code>round(quantile(means$Student), <span style="color:#880000">2</span>)</code></span></span>
##      0%     25%     50%     75%    100% 
## -495.61   -0.95    0.00    0.98 3422.66

对于一些样本,平均分布在分布的两个尾部具有极端异常值。

结论

这些实验的结果表明,对于小于20的样本,绝对应该避免学生t检验。当样本量至少为100时,大多数分布似乎都满足了测试的假设。 

总之,特别建议检查样本大小低于100的测量分布。由于中心极限定理不适用于具有无穷方差的分布,因此验证大样本大小的测量分布也是合理的。排除这种分配的可能性。正如我们在这里看到的,即使在5000的样本大小下,根据具有一个*度的t分布分布的测量也不满足测试的假设。

 

 

非常感谢您阅读本文,有任何问题请在下面留言!