Spark操作Hudi
程序员文章站
2022-07-14 20:25:49
...
pom文件如下
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.hj</groupId>
<artifactId>hudi-test</artifactId>
<version>1.0-SNAPSHOT</version>
<name>hudi-test</name>
<url>http://www.example.com</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<scala.version>2.11.8</scala.version>
<scala.compat.version>2.11.8</scala.compat.version>
<scala.binary.version>2.11</scala.binary.version>
<spark.version>2.4.4</spark.version>
<hoodie.version>0.5.3-SNAPSHOT</hoodie.version>
<scalikejdbc.version>2.5.0</scalikejdbc.version>
<hadoop.version>2.7.3</hadoop.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<exclusions>
<exclusion>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-avro_2.11</artifactId>
<version>2.4.4</version>
</dependency>
<!--<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>-->
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-spark-bundle_2.11</artifactId>
<version>0.5.3</version>
</dependency>
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-common</artifactId>
<version>0.5.3</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.29</version>
</dependency>
<dependency>
<groupId>com.typesafe</groupId>
<artifactId>config</artifactId>
<version>1.3.1</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc_${scala.binary.version}</artifactId>
<version>${scalikejdbc.version}</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc-core_${scala.binary.version}</artifactId>
<version>${scalikejdbc.version}</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc-config_${scala.binary.version}</artifactId>
<version>${scalikejdbc.version}</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.47</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
<exclusions>
<exclusion>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
</exclusion>
<exclusion>
<artifactId>slf4j-log4j12</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
<exclusion>
<artifactId>slf4j-api</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
<exclusions>
<exclusion>
<artifactId>slf4j-log4j12</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
<exclusion>
<artifactId>slf4j-api</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
<exclusion>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>${hadoop.version}</version>
<exclusions>
<exclusion>
<artifactId>slf4j-log4j12</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
<exclusion>
<artifactId>slf4j-api</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
<exclusion>
<groupId>xml-apis</groupId>
<artifactId>xml-apis</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.parquet</groupId>
<artifactId>parquet-avro</artifactId>
<version>1.10.0</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>2.3.1</version>
<scope>provided</scope>
<exclusions>
<exclusion>
<groupId>javax.mail</groupId>
<artifactId>mail</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty.aggregate</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.3.1</version>
<scope>provided</scope>
<exclusions>
<exclusion>
<groupId>javax.mail</groupId>
<artifactId>mail</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty.aggregate</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>com.facebook.presto</groupId>
<artifactId>presto-jdbc</artifactId>
<version>0.217</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>${project.build.sourceEncoding}</encoding>
</configuration>
</plugin>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
将core-site.xml
、hdfs-site.xml
、hive-site.xml
、yarn-site.xml
导入到resources目录下。
插入数据
package com.hudi
import org.apache.hudi.DataSourceWriteOptions
import org.apache.hudi.config.HoodieWriteConfig
import org.apache.spark.sql.{SaveMode, SparkSession}
import org.hj.hudi.Util
object HudiInsert {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder.appName("hudi insert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val insertData = Util.readFromTxtByLineToDf(spark,"E:\\Demo\\hudi-test-master\\src\\main\\resources\\test_insert_data.txt")
insertData.write.format("org.apache.hudi")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 并行度参数设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
// 表名设置
.option(HoodieWriteConfig.TABLE_NAME, "test")
.mode(SaveMode.Overwrite)
// 写入路径设置
.save("/tmp/hudi")
}
}
插入分区数据
package com.hudi
import org.apache.hudi.DataSourceWriteOptions
import org.apache.hudi.config.{HoodieIndexConfig, HoodieWriteConfig}
import org.apache.hudi.index.HoodieIndex
import org.apache.spark.sql.{SaveMode, SparkSession}
import org.hj.hudi.Util
object HudiInsertBy {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder.appName("hudi insert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[*]").getOrCreate()
// 读取文本文件转换为df
val insertData = Util.readFromTxtByLineToDf(spark, "E:\\Demo\\hudi-test-master\\src\\main\\resources\\test_insert_data.txt")
insertData.write.format("org.apache.hudi")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 设置分区列
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "dt")
// 设置当分区变更时,当前数据的分区目录是否变更
.option(HoodieIndexConfig.BLOOM_INDEX_UPDATE_PARTITION_PATH, "true")
// 设置索引类型目前有HBASE,INMEMORY,BLOOM,GLOBAL_BLOOM 四种索引 为了保证分区变更后能找到必须设置全局GLOBAL_BLOOM
.option(HoodieIndexConfig.INDEX_TYPE_PROP, HoodieIndex.IndexType.GLOBAL_BLOOM.name())
// 并行度参数设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.option(HoodieWriteConfig.TABLE_NAME, "test_partition")
.mode(SaveMode.Overwrite)
.save("/tmp/hudi")
}
}
更新数据(存在数据修改,不存在数据新增)
package com.hudi
import org.apache.hudi.DataSourceWriteOptions
import org.apache.hudi.config.HoodieWriteConfig
import org.apache.spark.sql.{SaveMode, SparkSession}
import org.hj.hudi.Util
object HudiUpsert {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder.appName("hudi upsert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val upsertData = Util.readFromTxtByLineToDf(spark, "E:\\Demo\\hudi-test-master\\src\\main\\resources\\test_update_data.txt")
upsertData.write.format("org.apache.hudi")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 表名称设置
.option(HoodieWriteConfig.TABLE_NAME, "test")
// 并行度参数设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.mode(SaveMode.Append)
// 写入路径设置
.save("/tmp/hudi");
}
}
更新分区数据
package com.hudi
import org.apache.hudi.DataSourceWriteOptions
import org.apache.hudi.config.{HoodieIndexConfig, HoodieWriteConfig}
import org.apache.hudi.index.HoodieIndex
import org.apache.spark.sql.{SaveMode, SparkSession}
import org.hj.hudi.Util
object HudiUpsertBy {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder.appName("upsert partition").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val upsertData = Util.readFromTxtByLineToDf(spark, "E:\\Demo\\hudi-test-master\\src\\main\\resources\\test_partition_update_data.txt")
upsertData.write.format("org.apache.hudi").option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 分区列设置
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "dt")
.option(HoodieWriteConfig.TABLE_NAME, "test_partition")
.option(HoodieIndexConfig.INDEX_TYPE_PROP, HoodieIndex.IndexType.GLOBAL_BLOOM.name())
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.mode(SaveMode.Append)
.save("/tmp/hudi");
}
}
删除数据(和更新数据一样,存在数据删除)
package com.hudi
import org.apache.hudi.DataSourceWriteOptions
import org.apache.hudi.config.HoodieWriteConfig
import org.apache.spark.sql.{SaveMode, SparkSession}
import org.hj.hudi.Util
object HudiDelte {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder.appName("delta insert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val deleteData = Util.readFromTxtByLineToDf(spark, "E:\\Demo\\hudi-test-master\\src\\main\\resources\\test_partition_delete_data.txt")
deleteData.write.format("com.uber.hoodie")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 表名称设置
.option(HoodieWriteConfig.TABLE_NAME, "test")
// 硬删除配置
.option(DataSourceWriteOptions.PAYLOAD_CLASS_OPT_KEY, "org.apache.hudi.EmptyHoodieRecordPayload")
}
}
查询数据
package com.hudi
import org.apache.spark.sql.SparkSession
object HudiQuery {
def main(args: Array[String]): Unit = {
val basePath = "/tmp/hudi"
val spark = SparkSession.builder.appName("query insert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val tripsSnapshotDF = spark.
read.
format("org.apache.hudi").
load(basePath + "/*/*")
tripsSnapshotDF.show()
}
}
上一篇: Hudi To Hive
下一篇: 开始使用 TypeScript