欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Hudi To Hive

程序员文章站 2022-07-14 20:25:55
...

Hudi To Hive

首先把hudi-hadoop-mr拷贝到hive的lib目录下。

cp packaging/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.5.3-sources.jar /opt/hdk/hive/lib/

[[email protected] /]# scp /opt/hdk/hive/lib/hudi-hadoop-mr-bundle-0.5.3-sources.jar [email protected]:/opt/hdk/hive/lib/
hudi-hadoop-mr-bundle-0.5.3-sources.jar                                                        100% 1014KB  80.6MB/s   00:00    
[[email protected] /]# scp /opt/hdk/hive/lib/hudi-hadoop-mr-bundle-0.5.3-sources.jar [email protected]:/opt/hdk/hive/lib/
hudi-hadoop-mr-bundle-0.5.3-sources.jar                                                        100% 1014KB  91.8MB/s   00:00

// 启动服务
nohup hive --service metastore >metasotre.log>&1 &
nohup hive --service hiveserver2 >hiveserver2.log >&1 &

导入Hive

package com.hudi

import org.apache.hudi.{DataSourceReadOptions, DataSourceWriteOptions}
import org.apache.hudi.config.{HoodieIndexConfig, HoodieWriteConfig}
import org.apache.hudi.hive.HiveSyncTool
import org.apache.hudi.index.HoodieIndex
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}
import org.hj.hudi.Util

object HudiToHive {
    def main(args: Array[String]): Unit = {
        val spark = SparkSession.builder.appName("delta hiveSync").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
        val upsertData = Util.readFromTxtByLineToDf(spark, "E:\\Demo\\hudi-test-master\\src\\main\\resources\\hive_sync.txt")

        upsertData.write.format("org.apache.hudi")
            // 设置主键列名
            .option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
            // 设置数据更新时间的列名
            .option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
            // 分区列设置
            .option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "dt")
            // 设置要同步的hive库名
            .option(DataSourceWriteOptions.HIVE_DATABASE_OPT_KEY, "hudi")
            // 设置要同步的hive表名
            .option(DataSourceWriteOptions.HIVE_TABLE_OPT_KEY, "test_hive_hudi")
            // 设置数据集注册并同步到hive
            .option(DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY, "true")
            // 设置当分区变更时,当前数据的分区目录是否变更
            .option(HoodieIndexConfig.BLOOM_INDEX_UPDATE_PARTITION_PATH, "true")
            // 设置要同步的分区列名
            .option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY, "dt")
            // 设置jdbc 连接同步
            .option(DataSourceWriteOptions.HIVE_URL_OPT_KEY, "jdbc:hive2://192.168.110.110:10000")
            // hudi表名称设置
            .option(HoodieWriteConfig.TABLE_NAME, "test_partition")
            // 用于将分区字段值提取到Hive分区列中的类,这里我选择使用当前分区的值同步
            .option(DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY, "org.apache.hudi.hive.MultiPartKeysValueExtractor")
            // 设置索引类型目前有HBASE,INMEMORY,BLOOM,GLOBAL_BLOOM 四种索引 为了保证分区变更后能找到必须设置全局GLOBAL_BLOOM
            .option(HoodieIndexConfig.INDEX_TYPE_PROP, HoodieIndex.IndexType.GLOBAL_BLOOM.name())
            // 并行度参数设置
            .option("hoodie.insert.shuffle.parallelism", "2")
            .option("hoodie.upsert.shuffle.parallelism", "2")
            .mode(SaveMode.Append)
            .save("/tmp/hudi");
    }

    def hiveSyncMergeOnReadByUtil(): Unit = {
        val args: Array[String] = Array("--jdbc-url", "jdbc:hive2://192.168.110.110:10000", "--partition-value-extractor", "org.apache.hudi.hive.MultiPartKeysValueExtractor", "--user", "hive", "--pass", "hive", "--partitioned-by", "dt", "--base-path", "/tmp/hive_hudi", "--database", "hudi", "--table", "test_hive_hudi")
        HiveSyncTool.main(args)
    }
}

Hive查询优化视图

package com.hudi

import java.sql.DriverManager
import java.util.Properties

object hiveViewRead {
    def main(args: Array[String]): Unit = {
        // 目标表
        val sourceTable = "test_partition"
        // 增量视图开始时间点
        val fromCommitTime = "20200220094506"
        // 获取当前增量视图后几个提交批次
        val maxCommits = "2"

        Class.forName("org.apache.hive.jdbc.HiveDriver")
        val prop = new Properties()
        prop.put("user", "hive")
        prop.put("password", "hive")
        val conn = DriverManager.getConnection("jdbc:hive2://192.168.110.110:10000/hudi", prop)
        val stmt = conn.createStatement
        // Allow queries without partition predicate
        stmt.execute("set hive.strict.checks.large.query=false")
        // Dont gather stats for the table created
        stmt.execute("set hive.stats.autogather=false")
        // Set the hoodie modie
        stmt.execute("set hoodie." + sourceTable + ".consume.mode=INCREMENTAL")
        // Set the from commit time
        stmt.execute("set hoodie." + sourceTable + ".consume.start.timestamp=" + fromCommitTime)
        // Set number of commits to pull
        stmt.execute("set hoodie." + sourceTable + ".consume.max.commits=" + maxCommits)

        val rs = stmt.executeQuery("select * from " + sourceTable)
        val metaData = rs.getMetaData
        val count = metaData.getColumnCount


        while (rs.next()) {
            for (i <- 1 to count) {
                println(metaData.getColumnName(i) + ":" + rs.getObject(i).toString)
            }
            println("-----------------------------------------------------------")
        }

        rs.close()
        stmt.close()
        conn.close()
    }
}

Hive增量视图

package com.hudi

import java.sql.DriverManager
import java.util.Properties

object hiveViewRead {
    def main(args: Array[String]): Unit = {
        // 目标表
        val sourceTable = "test_partition"
        // 增量视图开始时间点
        val fromCommitTime = "20200220094506"
        // 获取当前增量视图后几个提交批次
        val maxCommits = "2"

        Class.forName("org.apache.hive.jdbc.HiveDriver")
        val prop = new Properties()
        prop.put("user", "hive")
        prop.put("password", "hive")
        val conn = DriverManager.getConnection("jdbc:hive2://192.168.110.110:10000/hudi", prop)
        val stmt = conn.createStatement
        // 这里设置增量视图参数
        stmt.execute("set hive.input.format=org.apache.hudi.hadoop.hive.HoodieCombineHiveInputFormat")
        // Allow queries without partition predicate
        stmt.execute("set hive.strict.checks.large.query=false")
        // Dont gather stats for the table created
        stmt.execute("set hive.stats.autogather=false")
        // Set the hoodie modie
        stmt.execute("set hoodie." + sourceTable + ".consume.mode=INCREMENTAL")
        // Set the from commit time
        stmt.execute("set hoodie." + sourceTable + ".consume.start.timestamp=" + fromCommitTime)
        // Set number of commits to pull
        stmt.execute("set hoodie." + sourceTable + ".consume.max.commits=" + maxCommits)

        val rs = stmt.executeQuery("select * from " + sourceTable)
        val metaData = rs.getMetaData
        val count = metaData.getColumnCount


        while (rs.next()) {
            for (i <- 1 to count) {
                println(metaData.getColumnName(i) + ":" + rs.getObject(i).toString)
            }
            println("-----------------------------------------------------------")
        }

        rs.close()
        stmt.close()
        conn.close()
    }
}

上一篇: GO语言 函数

下一篇: Spark操作Hudi