欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

机器学习——聚类

程序员文章站 2022-07-14 19:33:43
...

kMeans:

import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import matplotlib.colors
from sklearn.cluster import KMeans


def expand(a, b):
    d = (b - a) * 0.1
    return a-d, b+d


if __name__ == "__main__":
    N = 400
    centers = 4
    data, y = ds.make_blobs(N, n_features=2, centers=centers, random_state=2)
    data2, y2 = ds.make_blobs(N, n_features=2, centers=centers, cluster_std=(1,2.5,0.5,2), random_state=2)
    data3 = np.vstack((data[y == 0][:], data[y == 1][:50], data[y == 2][:20], data[y == 3][:5]))
    y3 = np.array([0] * 100 + [1] * 50 + [2] * 20 + [3] * 5)

    cls = KMeans(n_clusters=4, init='k-means++')
    y_hat = cls.fit_predict(data)
    y2_hat = cls.fit_predict(data2)
    y3_hat = cls.fit_predict(data3)

    m = np.array(((1, 1), (1, 3)))
    data_r = data.dot(m)
    y_r_hat = cls.fit_predict(data_r)

    matplotlib.rcParams['font.sans-serif'] = [u'SimHei']
    matplotlib.rcParams['axes.unicode_minus'] = False
    cm = matplotlib.colors.ListedColormap(list('rgbm'))

    plt.figure(figsize=(9, 10), facecolor='w')
    plt.subplot(421)
    plt.title(u'原始数据')
    plt.scatter(data[:, 0], data[:, 1], c=y, s=30, cmap=cm, edgecolors='none')
    x1_min, x2_min = np.min(data, axis=0)
    x1_max, x2_max = np.max(data, axis=0)
    x1_min, x1_max = expand(x1_min, x1_max)
    x2_min, x2_max = expand(x2_min, x2_max)
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(True)

    plt.subplot(422)
    plt.title(u'KMeans++聚类')
    plt.scatter(data[:, 0], data[:, 1], c=y_hat, s=30, cmap=cm, edgecolors='none')
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(True)

    plt.subplot(423)
    plt.title(u'旋转后数据')
    plt.scatter(data_r[:, 0], data_r[:, 1], c=y, s=30, cmap=cm, edgecolors='none')
    x1_min, x2_min = np.min(data_r, axis=0)
    x1_max, x2_max = np.max(data_r, axis=0)
    x1_min, x1_max = expand(x1_min, x1_max)
    x2_min, x2_max = expand(x2_min, x2_max)
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(True)

    plt.subplot(424)
    plt.title(u'旋转后KMeans++聚类')
    plt.scatter(data_r[:, 0], data_r[:, 1], c=y_r_hat, s=30, cmap=cm, edgecolors='none')
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(True)

    plt.subplot(425)
    plt.title(u'方差不相等数据')
    plt.scatter(data2[:, 0], data2[:, 1], c=y2, s=30, cmap=cm, edgecolors='none')
    x1_min, x2_min = np.min(data2, axis=0)
    x1_max, x2_max = np.max(data2, axis=0)
    x1_min, x1_max = expand(x1_min, x1_max)
    x2_min, x2_max = expand(x2_min, x2_max)
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(True)

    plt.subplot(426)
    plt.title(u'方差不相等KMeans++聚类')
    plt.scatter(data2[:, 0], data2[:, 1], c=y2_hat, s=30, cmap=cm, edgecolors='none')
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(True)

    plt.subplot(427)
    plt.title(u'数量不相等数据')
    plt.scatter(data3[:, 0], data3[:, 1], s=30, c=y3, cmap=cm, edgecolors='none')
    x1_min, x2_min = np.min(data3, axis=0)
    x1_max, x2_max = np.max(data3, axis=0)
    x1_min, x1_max = expand(x1_min, x1_max)
    x2_min, x2_max = expand(x2_min, x2_max)
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(True)

    plt.subplot(428)
    plt.title(u'数量不相等KMeans++聚类')
    plt.scatter(data3[:, 0], data3[:, 1], c=y3_hat, s=30, cmap=cm, edgecolors='none')
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(True)

    plt.tight_layout(2, rect=(0, 0, 1, 0.97))
    plt.suptitle(u'数据分布对KMeans聚类的影响', fontsize=18)
    # https://github.com/matplotlib/matplotlib/issues/829
    # plt.subplots_adjust(top=0.92)
    plt.show()

实验结果:
机器学习——聚类

AgglomerativeClustering:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
from sklearn.neighbors import kneighbors_graph
import sklearn.datasets as ds
import warnings


def extend(a, b):
    return 1.05*a-0.05*b, 1.05*b-0.05*a


if __name__ == '__main__':
    warnings.filterwarnings(action='ignore', category=UserWarning)
    np.set_printoptions(suppress=True)
    np.random.seed(0)
    n_clusters = 4
    N = 400
    data1, y1 = ds.make_blobs(n_samples=N, n_features=2, centers=((-1, 1), (1, 1), (1, -1), (-1, -1)),
                              cluster_std=(0.1, 0.2, 0.3, 0.4), random_state=0)
    data1 = np.array(data1)
    n_noise = int(0.1*N)
    r = np.random.rand(n_noise, 2)
    data_min1, data_min2 = np.min(data1, axis=0)
    data_max1, data_max2 = np.max(data1, axis=0)
    r[:, 0] = r[:, 0] * (data_max1-data_min1) + data_min1
    r[:, 1] = r[:, 1] * (data_max2-data_min2) + data_min2
    data1_noise = np.concatenate((data1, r), axis=0)
    y1_noise = np.concatenate((y1, [4]*n_noise))

    data2, y2 = ds.make_moons(n_samples=N, noise=.05)
    data2 = np.array(data2)
    n_noise = int(0.1 * N)
    r = np.random.rand(n_noise, 2)
    data_min1, data_min2 = np.min(data2, axis=0)
    data_max1, data_max2 = np.max(data2, axis=0)
    r[:, 0] = r[:, 0] * (data_max1 - data_min1) + data_min1
    r[:, 1] = r[:, 1] * (data_max2 - data_min2) + data_min2
    data2_noise = np.concatenate((data2, r), axis=0)
    y2_noise = np.concatenate((y2, [3] * n_noise))

    mpl.rcParams['font.sans-serif'] = [u'SimHei']
    mpl.rcParams['axes.unicode_minus'] = False

    cm = mpl.colors.ListedColormap(['r', 'g', 'b', 'm', 'c'])
    plt.figure(figsize=(14, 12), facecolor='w')
    plt.cla()
    linkages = ("ward", "complete", "average")
    for index, (n_clusters, data, y) in enumerate(((4, data1, y1), (4, data1_noise, y1_noise),
                                                   (2, data2, y2), (2, data2_noise, y2_noise))):
        plt.subplot(4, 4, 4*index+1)
        plt.scatter(data[:, 0], data[:, 1], c=y, cmap=cm)
        plt.title('Prime', fontsize=17)
        plt.grid(b=True, ls=':')
        data_min1, data_min2 = np.min(data, axis=0)
        data_max1, data_max2 = np.max(data, axis=0)
        plt.xlim(extend(data_min1, data_max1))
        plt.ylim(extend(data_min2, data_max2))

        connectivity = kneighbors_graph(data, n_neighbors=7, mode='distance', metric='minkowski', p=2, include_self=True)
        connectivity = 0.5 * (connectivity + connectivity.T)
        for i, linkage in enumerate(linkages):
            ac = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean',
                                         connectivity=connectivity, linkage=linkage)
            ac.fit(data)
            y = ac.labels_
            plt.subplot(4, 4, i+2+4*index)
            plt.scatter(data[:, 0], data[:, 1], c=y, cmap=cm)
            plt.title(linkage, fontsize=17)
            plt.grid(b=True, ls=':')
            plt.xlim(extend(data_min1, data_max1))
            plt.ylim(extend(data_min2, data_max2))
    plt.suptitle(u'层次聚类的不同合并策略', fontsize=20)
    plt.tight_layout(0.5, rect=(0, 0, 1, 0.95))
    plt.show()

实验结果:
机器学习——聚类

相关标签: 聚类