欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

机器学习中类别变量的编码方法总结

程序员文章站 2022-07-14 19:21:54
...

 机器学习

Author:louwill

Machine Learning Lab

     在做结构化数据训练时,类别特征是一个非常常见的变量类型。机器学习中有多种类别变量编码方式,各种编码方法都有各自的适用场景和特点。本文就对机器学习中常见的类别编码方式做一个简单的总结。

硬编码:Label Encoding

     所谓硬编码,即直接对类别特征进行数值映射,有多少类别取值就映射多少数值。这种硬编码方式简单粗暴,方便快捷。但其仅在类别特征内部取值是有序的情况才好使用,即类别特征取值存在明显的顺序性,比如说学历特征取值为高中、本科、硕士和博士,各学历之间存在明显的顺序关系。

     Sklearn提供了Label Encoding的实现方式,示例代码如下:

from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(['undergraduate', 'master', 'PhD', 'Postdoc'])
le.transform(['undergraduate', 'master', 'PhD', 'Postdoc'])
array([3, 2, 0, 1], dtype=int64)

独热编码:One-hot Encoding

     One-hot编码应该是应用最广泛的类别特征编码方式了。假设一个类别特征有m个类别取值,通过One-hot编码我们可以将其转换为m个二元特征,每个特征对应该取值类别。

机器学习中类别变量的编码方法总结

     对于类别特征内部取值不存在明显的内在顺序时,即直接的硬编码不适用时,One-hot编码的作用就凸显出来了。但当类别特征取值过多时,One-hot编码很容易造成维度灾难,特别是对于文本类的特征,如果使用One-hot编码对其进行编码,基本上都是茫茫零海。所以,在类别特征取值无序,且特征取值数量少于5个时,可使用One-hot方法进行类别编码。有朋友可能会问,一定得是5个吗,6个行不行,当然也可以,这里并没有固定标准,但差不多就是这个数据左右。数量再多就不建议使用One-hot了。

     Pandas和Sklearn都提供了One-hot编码的实现方式,示例代码如下。

import pandas as pd
df = pd.DataFrame({'f1':['A','B','C'], 
'f2':['Male','Female','Male']})
df = pd.get_dummies(df, columns=['f1', 'f2'])
df

机器学习中类别变量的编码方法总结

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder(handle_unknown='ignore')
X = [['Male', 1], ['Female', 3], ['Female', 2]]
enc.fit(X)
enc.transform([['Female', 1], ['Male', 4]]).toarray()
array([[1., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.]])

目标变量编码:Target Encoding

     Target Encoding就是用目标变量的类别均值来给类别特征做编码。CatBoost中就大量使用目标变量统计的方法来对类别特征编码。但在实际操作时,直接用类别均值替换类别特征的话,会造成一定程度的标签信息泄露的情况,主流方法是使用两层的交叉验证来计算目标均值。Target Encoding一般适用于类别特征无序且类别取值数量大于5个的情形。

     参考代码如下:

### 该代码来自知乎专栏:
### https://zhuanlan.zhihu.com/p/40231966
from sklearn.model_selection import KFold
n_folds = 20
n_inner_folds = 10
likelihood_encoded = pd.Series()
likelihood_coding_map = {}
# global prior mean
oof_default_mean = train[target].mean()      
kf = KFold(n_splits=n_folds, shuffle=True)
oof_mean_cv = pd.DataFrame()
split = 0
for infold, oof in kf.split(train[feature]):
print ('==============level 1 encoding..., fold %s ============' % split)
inner_kf = KFold(n_splits=n_inner_folds, shuffle=True)
inner_oof_default_mean = train.iloc[infold][target].mean()
inner_split = 0
inner_oof_mean_cv = pd.DataFrame()
likelihood_encoded_cv = pd.Series()
for inner_infold, inner_oof in inner_kf.split(train.iloc[infold]):
print ('==============level 2 encoding..., inner fold %s ============' % inner_split)
        # inner out of fold mean
oof_mean = train.iloc[inner_infold].groupby(by=feature)[target].mean()
        # assign oof_mean to the infold
likelihood_encoded_cv = likelihood_encoded_cv.append(train.iloc[infold].apply(
lambda x : oof_mean[x[feature]]
if x[feature] in oof_mean.index
else inner_oof_default_mean, axis = 1))
inner_oof_mean_cv = inner_oof_mean_cv.join(pd.DataFrame(oof_mean), rsuffix=inner_split, how='outer')
inner_oof_mean_cv.fillna(inner_oof_default_mean, inplace=True)
inner_split += 1
oof_mean_cv = oof_mean_cv.join(pd.DataFrame(inner_oof_mean_cv), rsuffix=split, how='outer')
oof_mean_cv.fillna(value=oof_default_mean, inplace=True)
split += 1
print ('============final mapping...===========')
likelihood_encoded = likelihood_encoded.append(train.iloc[oof].apply(
lambda x: np.mean(inner_oof_mean_cv.loc[x[feature]].values)
if x[feature] in inner_oof_mean_cv.index
else oof_default_mean, axis=1))

模型自动编码

     在LightGBM和CatBoost等算法中,模型可以直接对类别特征进行编码,实际使用时直接将类别特征标记后传入对应的api即可。一个示例代码如下:

lgb_train = lgb.Dataset(train2[features], train2['total_cost'], 
                       categorical_feature=['sex'])

总结

根据本文的梳理,可总结机器学习中类别特征的编码方式如下:

  • Label Encoding

    • 类别特征内部有序

  • One-hot Encoding

    • 类别特征内部无序

    • 类别数值<5

  • Target Encoding

    • 类别特征内部无序

    • 类别数值>5

  • 模型自动编码

    • LightGBM

    • CatBoost

往期精彩:

【原创首发】机器学习公式推导与代码实现30讲.pdf

【原创首发】深度学习语义分割理论与实战指南.pdf

机器学习中类别变量的编码方法总结

喜欢您就点个在看!

上一篇: 机器视觉学习总结

下一篇: PGA管理