欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Android消息机制源码解析(Handler)

程序员文章站 2022-07-14 16:43:16
...

Android消息机制,其实也就是Handler机制,主要用于UI线程和子线程之间交互。众所周知,一般情况下,出于安全的考虑,所有与UI控件的操作都要放在主线程即UI线程中,而一些耗时操作应当放在子线程中。当在子线程中完成耗时操作并要对UI控件进行操作时,就要用Handler来控制。另外,Android系统框架内,Activity生命周期的通知等功能也是通过消息机制来实现的。本篇博文主要是想通过Handler源码解析,来加深我自己对Android消息机制的理解。

一、Handler使用

使用例子:

private Handler handler = new Handler(){//1.Handler初始化,一个匿名内部类
    @Override
    public void handleMessage(Message msg) {
         super.handleMessage(msg);
         textView.setText("对UI进行操作");
    }
};
@Override
protected void onCreate(Bundle savedInstanceState){
       super.onCreate(savedInstanceState);
       setContentView(R.layout.activity_main);
       textView = (TextView) findViewById(R.id.mytv);
       new Thread(new Runnable() {
           @Override
           public void run() {
               //模拟耗时操作
               SystemClock.sleep(3000);
               handler.sendMessage(new Message());//2.在子线程中sendMessage();
           }
       }).start();

   }

1.我们先来看看,Handler初始化。
Handler初始化的同时,也实现了消息处理方法handleMessage()。查看Handler源码

    final MessageQueue mQueue;
    final Looper mLooper;
    final Callback mCallback;
    /**
     * Default constructor associates this handler with the queue for the
     * current thread.
     *
     * If there isn't one, this handler won't be able to receive messages.
     */
    public Handler() {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();//3.核心代码。获取一个Looper
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;//4.核心代码。从Looper获取一个消息队列
        mCallback = null;
    }

在源码中,Handler定义了一个MessageQueue消息队列mQueue和一个Looper对象mLooper,并都进行了初始化,分别对mQueue和mLooper进行了赋值,其中mLooper是通过Looper.myLooper()赋值,mQueues是Looper中的mQueue。通过了解,知Looper.myLooper()是一个静态方法。让我们进入Looper类看看

/**
  * Class used to run a message loop for a thread.  Threads by default do
  * not have a message loop associated with them; to create one, call
  * {@link #prepare} in the thread that is to run the loop, and then
  * {@link #loop} to have it process messages until the loop is stopped.
  * 
  * <p>Most interaction with a message loop is through the
  * {@link Handler} class.
  * 
  * <p>This is a typical example of the implementation of a Looper thread,
  * using the separation of {@link #prepare} and {@link #loop} to create an
  * initial Handler to communicate with the Looper.
  *
  * <pre>
  *  class LooperThread extends Thread {
  *      public Handler mHandler;
  *
  *      public void run() {
  *          Looper.prepare();
  *
  *          mHandler = new Handler() {
  *              public void handleMessage(Message msg) {
  *                  // process incoming messages here
  *              }
  *          };
  *
  *          Looper.loop();
  *      }
  *  }</pre>
  */
public class Looper {
    private static final String TAG = "Looper";

    // sThreadLocal.get() will return null unless you've called prepare().

    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
    private static Looper sMainLooper;  // guarded by Looper.class

    final MessageQueue mQueue;
    final Thread mThread;
    volatile boolean mRun;

    private Printer mLogging;

     /** Initialize the current thread as a looper.
      * This gives you a chance to create handlers that then reference
      * this looper, before actually starting the loop. Be sure to call
      * {@link #loop()} after calling this method, and end it by calling
      * {@link #quit()}.
      */
    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    /**
     * Initialize the current thread as a looper, marking it as an
     * application's main looper. The main looper for your application
     * is created by the Android environment, so you should never need
     * to call this function yourself.  See also: {@link #prepare()}
     */
    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
       ......
    }

    /**
     * Return the Looper object associated with the current thread.  Returns
     * null if the calling thread is not associated with a Looper.
     */
    public static Looper myLooper() {
        return sThreadLocal.get();
    }
   ......
}

从Looper源码的注释中,我们知道Looper是一个专门为线程提供消息循环的类,通过调用prepare()和loop()就可以为线程提供一个消息循环机制。线程本来是没有消息循环机制的,想要消息循环机制就必须自己建立。如:

   class LooperThread extends Thread {
        public Handler mHandler;

        public void run() {
            Looper.prepare();
            mHandler = new Handler() {
                public void handleMessage(Message msg) {
                    // process incoming messages here
                }
            };
            Looper.loop();
        }
   }

在Looper源码中,有两个方法prepare()和prepareMainLooper()对Looper进行了初始化,Looper.myLooper()核心代码为sThreadLocal.get(),主要也是从sThreadLocal中取值。两个初始化方法的源码为

     /** Initialize the current thread as a looper.
      * This gives you a chance to create handlers that then reference
      * this looper, before actually starting the loop. Be sure to call
      * {@link #loop()} after calling this method, and end it by calling
      * {@link #quit()}.
      */
    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    /**
     * Initialize the current thread as a looper, marking it as an
     * application's main looper. The main looper for your application
     * is created by the Android environment, so you should never need
     * to call this function yourself.  See also: {@link #prepare()}
     */
    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

从源码中知道prepare()创建的Looper为允许退出循环的,而prepareMainLooper()方法创建的是不应许退出循环的,通过分析,很明显知道prepare()方法创建的是一般线程的Looper,而通过而prepareMainLooper()创建的,就是主线程消息循环的Looper。

现在,虽然我们知道了Handler中对MessageQueue队列和Looper进行了赋值,但是Looper啥时候通过prepareMainLooper()初始化的呢?什么是开始调loop()开始循环的呢?这里我们先停一下,后面我们会说道。

2.我们再看例子中的注释方法,在子线程中handler.sendMessage(message)

我们继续看Handler源码

    ......
    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public boolean sendMessageAtTime(Message msg, long uptimeMillis)
    {
        boolean sent = false;
        MessageQueue queue = mQueue;
        if (queue != null) {
            msg.target = this;//1.对Message中的target赋值Handler
            sent = queue.enqueueMessage(msg, uptimeMillis);//2.向循环队列中,加入消息
        }
        else {
            RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
        }
        return sent;
    }
....

阅读Handler源码知,发送消息的方法还有许多种,sendMessage()是其中一种,如果还想具体了解还有哪些,可以下载Handler源码看一下,这里就不一一介绍了。从上面三个方法中我们了解到方法sendMessageAtTime()是最后调用的,这个方法主要是,对Message的target赋值为发送主体Handler,并把Message加入消息队列MessageQueue中,等待消息队列循环处理。

Handler发送主体为Message,Message是啥呢?Message主要就是对一些数据做封装处理,其中有int变量what,arg1,arg2,Object变量obj等,具体可以查看Message源码,这里就不详细说了。

二、Looper的创建及循环机制

上面说到,Looper的建立有两种方式prepare()和prepareMainLooper(),其中prepare建立的为一般子线程Looper,可以取消循环;而prepareMainLooper()建立的为主线程的Looper,不可以取消循环。到底而prepareMainLooper建立的是不是主线程循环呢?让我们继续分析

1.主线程Looper建立

主线程即UI线程,说到UI线程,我们知道应用程序一启动,主(UI)线程就开始启动,而线程的建立必须要在进程的基础上。通过对Android应用程序启动的分析,我们知道,应用程序启动,首先会通过Zygote复制自身fork出一个进程,然后再由进程创建一个主线程,主线程的建立和ActivityThread息息相关,通过分析,知ActivityThread的main方法就是应用程序启动的入口。具体可以参考:Android应用程序入口源码解析

让我们来看一下ActivityThread类的main方法:

 public static void main(String[] args) {
        SamplingProfilerIntegration.start();

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Process.setArgV0("<pre-initialized>");

        Looper.prepareMainLooper();//1.主线程Looper创建
        if (sMainThreadHandler == null) {
            sMainThreadHandler = new Handler();
        }

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        AsyncTask.init();

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        Looper.loop();//2.主线程Looper循环

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

从源码知道,正如我们想的那样prepareMainLooper()建立的Looper就是主线程的Looper。

2.Looper的消息循环

从上面ActivityThread的main方法中,我们发现Looper.loop()消息循环方法。Looper是怎么循环的,这里让我们来看一下Looper.loop()

/**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {//for循环
            Message msg = queue.next(); //从消息队列中取值
            if (msg == null) {//消息为空就返回
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            msg.target.dispatchMessage(msg);//分发消息

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycle();
        }
    }

从loop()源码中我们知道,建立了一个for循环从消息队列中取数据,然后通过msg.target.dispatchMessage(msg)分发消息,从前面我们知道target就是handler,这里我们再看一下Handler的消息分发方法dispatchMessage()

    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

在这里我们就看到,Handler最后会调用handleMessage()方法,只要message中callback为空,就是调用handleMessage(),从而实现消息的处理。

到这里,我们Android Handler消息分发机制解析就分解完了。但这里需要注意一下的是,在loop循环中,如果消息为空就会跳出循环,而我们的主线程Looper循环应该是死循环才对。针对这个问题,我们继续深入源码看一下,前面说prepare()和prepareMainLooper()是两种建立Looper的方式,两者的区别是一个是可取消循环的,一个是不可以取消循环的,这里让我们再来看看一下Looper的源码


    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mRun = true;
        mThread = Thread.currentThread();
    }

通过查看源码发现,是否可以取消消息循环,主要控制是MessageQueue里面,这里我们可以知道,主线程的消息循环控制应该就在 queue.next()方法里,好了,让我们来看MessageQueue的next方法

  final Message next() {
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;

        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
            nativePollOnce(mPtr, nextPollTimeoutMillis);//1.核心代码

            synchronized (this) {
                if (mQuiting) {
                    return null;
                }

            .......省略代码,获取消息队列中的Message      

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

在next()方法中,有一个原生方法nativePollOnce(),它的作用是干啥的呢?是不是就是控制主线程循环的呢?通过进一步阅读C++源码,我们知道这里是利用Linux系统中epoll_wait方法来进行阻塞,形成一个等待状态,也就是说,当消息队列中消息为空时,nativePollOnce()方法不会返回,会进行阻塞,形成一个等待状态,等有新消息进入消息队列,才会返回,从而获取消息。这里我们也来看一下消息队列的插入方法

  final boolean enqueueMessage(Message msg, long when) {
        if (msg.isInUse()) {
            throw new AndroidRuntimeException(msg + " This message is already in use.");
        }
        if (msg.target == null) {
            throw new AndroidRuntimeException("Message must have a target.");
        }

        boolean needWake;
        synchronized (this) {
            if (mQuiting) {
                RuntimeException e = new RuntimeException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w("MessageQueue", e.getMessage(), e);
                return false;
            }
            msg.when = when;
            Message p = mMessages;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
        }
        if (needWake) {
            nativeWake(mPtr);//核心代码
        }
        return true;
    }

在消息队列中加入消息之后,会调用一个原生方法 nativeWake(),这个原生的C++的方法,也就是通知nativePollOnce()返回的方法,通过方法nativeWake和nativePollOnce的一唱一和,从而实现主线程的消息队列的无限循环。

具体C++代码是怎么实现的,这里推荐一篇博文从源码角度分析native层消息机制与java层消息机制的关联

好了,分析就到这里了。

三、总结

Android消息分发机制,也就是Handler处理消息机制。流程如下:

  • 1.应用程序在启动的时候,通过Zygote复制自身fork出应用程序的进程,然后该进程又以ActivityThread创建主线程。
  • 2.主线程启动时,在ActivityThread的main方法中初始化了Looper和执行消息队列的循环。
  • 3.使用过程中,Handler初始化,获取了主线程的Looper和消息队列MessageQueue,并实现消息处理方法handlerMessage
  • 4.Handler通过sendMessage方法将消息插入消息队列
  • 5.通过Looper消息队列的循环,从而执行处理方法,实现了UI线程和子线程之间的交互。

注:源码采用android-4.1.1_r1版本,建议下载源码然后自己走一遍流程,这样更能加深理解。

四、相关及参考文档

Android应用程序进程启动过程(前篇)

Android消息机制学习笔记

从源码角度分析native层消息机制与java层消息机制的关联

ActivityThread

Java单链表、双端链表、有序链表实现