欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Android 驱动和系统开发 2. 解析模拟器GPS模块 (原创)

程序员文章站 2022-07-14 16:28:35
...

好久没有写技术博客了,恰逢今天还感冒了,这破天气,晚上凉风一吹,就感冒了,要加强锻炼呀。

好了,废话不多说,由于工作需要,我要移植一个虚拟的gps模块,于是乎,我就参考了android模拟器的gps模块的实现方法,只需稍微改动就完成了我的工作了,随后我也会附上我做的模块的代码,这里主要还是来解析下模拟器上的gps模块代码吧。

相信做过android location方面应用的同志都知道,android 模拟器虽然没有真正的GPS功能,但是DDMS可以模拟GPS,通过telnet连接到adb,然后发送GPS数据,再转化成NMEA格式的信号给android系统,就可以模拟出location功能了,相信用过的童鞋都知道,没用过的同志去搜索一下就知道了,这里我就不多说了,我主要还是来分析一下这个模拟的功能是如何实现的,这里还是膜拜一下写android源码的大神们,多看看源码,学到的东西很多呢。

首先,我们直入主题,对于移植系统的人来说(比如说我),关注的是中间部分的代码,android的framework层我们需要改动的很少,最多就是加点log来调试,驱动层呢,因为模拟器没有真实的设备,也不可能利用PC上的资源区模拟,因为PC是没有GPS模块的(除非你的电脑很高级),但是我想还是可以通过网络来得到地理位置的,虽然不是非常的准确,希望google的工程师可以去完善,呵呵,题外话了。说了这么多,我就是想说,android 模拟器中gps模块的功能主要依赖于2个东西,一个是ddms中的geo fix命令,还有一个是hal层中的gps_qemu.c中作为硬件抽象层的处理,把虚拟的数据上报给framework层。

主要层次如下图

Android 驱动和系统开发 2. 解析模拟器GPS模块 (原创)

好了,思路清晰了,咱就看代码,位于源码目录下/sdk/emulator/gps/gps_qemu.c

首先我们要搞清楚,在andrroid中HAL 的一个位置问题,HAL是为了更好的封装好硬件驱动存在的,主要是一些接口,编译成库文件,给framework中国的jni来调用,我们这里的GPS模块会被编译成gps.goldfish.so文件,在同目录下的Android.mk中有写到

LOCAL_CFLAGS += -DQEMU_HARDWARE
LOCAL_SHARED_LIBRARIES := liblog libcutils libhardware
LOCAL_SRC_FILES := gps_qemu.c
LOCAL_MODULE := gps.goldfish
LOCAL_MODULE_TAGS := debug

然后呢,在jni中会这样调用

static void android_location_GpsLocationProvider_class_init_native(JNIEnv* env, jclass clazz) {
    int err;
    hw_module_t* module;

    method_reportLocation = env->GetMethodID(clazz, "reportLocation", "(IDDDFFFJ)V");
    method_reportStatus = env->GetMethodID(clazz, "reportStatus", "(I)V");
    method_reportSvStatus = env->GetMethodID(clazz, "reportSvStatus", "()V");
    method_reportAGpsStatus = env->GetMethodID(clazz, "reportAGpsStatus", "(III)V");
    method_reportNmea = env->GetMethodID(clazz, "reportNmea", "(J)V");
    method_setEngineCapabilities = env->GetMethodID(clazz, "setEngineCapabilities", "(I)V");
    method_xtraDownloadRequest = env->GetMethodID(clazz, "xtraDownloadRequest", "()V");
    method_reportNiNotification = env->GetMethodID(clazz, "reportNiNotification",
            "(IIIIILjava/lang/String;Ljava/lang/String;IILjava/lang/String;)V");
    method_requestRefLocation = env->GetMethodID(clazz,"requestRefLocation","(I)V");
    method_requestSetID = env->GetMethodID(clazz,"requestSetID","(I)V");
    method_requestUtcTime = env->GetMethodID(clazz,"requestUtcTime","()V");

    err = hw_get_module(GPS_HARDWARE_MODULE_ID, (hw_module_t const**)&module);
    if (err == 0) {
        hw_device_t* device;
        err = module->methods->open(module, GPS_HARDWARE_MODULE_ID, &device);
        if (err == 0) {
            gps_device_t* gps_device = (gps_device_t *)device;
            sGpsInterface = gps_device->get_gps_interface(gps_device);
        }
    }
    if (sGpsInterface) {
        sGpsXtraInterface =
            (const GpsXtraInterface*)sGpsInterface->get_extension(GPS_XTRA_INTERFACE);
        sAGpsInterface =
            (const AGpsInterface*)sGpsInterface->get_extension(AGPS_INTERFACE);
        sGpsNiInterface =
            (const GpsNiInterface*)sGpsInterface->get_extension(GPS_NI_INTERFACE);
        sGpsDebugInterface =
            (const GpsDebugInterface*)sGpsInterface->get_extension(GPS_DEBUG_INTERFACE);
        sAGpsRilInterface =
            (const AGpsRilInterface*)sGpsInterface->get_extension(AGPS_RIL_INTERFACE);
    }
}
这个函数在android设备启动的时候会被调用来初始化GPS模块的一些东西,主要是来的到GPS模块的一些接口函数,重点看这个函数

    err = hw_get_module(GPS_HARDWARE_MODULE_ID, (hw_module_t const**)&module);

这个函数原型在HAL中的hardware.c中

int hw_get_module_by_class(const char *class_id, const char *inst,
                           const struct hw_module_t **module)
{
    int status;
    int i;
    const struct hw_module_t *hmi = NULL;
    char prop[PATH_MAX];
    char path[PATH_MAX];
    char name[PATH_MAX];

    if (inst)
        snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
    else
        strlcpy(name, class_id, PATH_MAX);

    /*
     * Here we rely on the fact that calling dlopen multiple times on
     * the same .so will simply increment a refcount (and not load
     * a new copy of the library).
     * We also assume that dlopen() is thread-safe.
     */

    /* Loop through the configuration variants looking for a module */
    for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++) {
        if (i < HAL_VARIANT_KEYS_COUNT) {
            if (property_get(variant_keys[i], prop, NULL) == 0) {
                continue;
            }
            snprintf(path, sizeof(path), "%s/%s.%s.so",
                     HAL_LIBRARY_PATH2, name, prop);
            if (access(path, R_OK) == 0) break;

            snprintf(path, sizeof(path), "%s/%s.%s.so",
                     HAL_LIBRARY_PATH1, name, prop);
            if (access(path, R_OK) == 0) break;
        } else {
            snprintf(path, sizeof(path), "%s/%s.default.so",
                     HAL_LIBRARY_PATH1, name);
            if (access(path, R_OK) == 0) break;
        }
    }

    status = -ENOENT;
    if (i < HAL_VARIANT_KEYS_COUNT+1) {
        /* load the module, if this fails, we're doomed, and we should not try
         * to load a different variant. */
        status = load(class_id, path, module);
    }

    return status;
}

当我们编译gps模块之后会在/system/lib/hw/下生成一个gps.goldfish.so文件,这个函数就是去寻找这个库文件,然后调用load函数去打开这个库文件,来得到库中的函数接口

static int load(const char *id,
        const char *path,
        const struct hw_module_t **pHmi)
{
    int status;
    void *handle;
    struct hw_module_t *hmi;

    /*
     * load the symbols resolving undefined symbols before
     * dlopen returns. Since RTLD_GLOBAL is not or'd in with
     * RTLD_NOW the external symbols will not be global
     */
    handle = dlopen(path, RTLD_NOW);
    if (handle == NULL) {
        char const *err_str = dlerror();
        LOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");
        status = -EINVAL;
        goto done;
    }

    /* Get the address of the struct hal_module_info. */
    const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
    hmi = (struct hw_module_t *)dlsym(handle, sym);
    if (hmi == NULL) {
        LOGE("load: couldn't find symbol %s", sym);
        status = -EINVAL;
        goto done;
    }

    /* Check that the id matches */
    if (strcmp(id, hmi->id) != 0) {
        LOGE("load: id=%s != hmi->id=%s", id, hmi->id);
        status = -EINVAL;
        goto done;
    }

    hmi->dso = handle;

    /* success */
    status = 0;

    done:
    if (status != 0) {
        hmi = NULL;
        if (handle != NULL) {
            dlclose(handle);
            handle = NULL;
        }
    } else {
        LOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
                id, path, *pHmi, handle);
    }

    *pHmi = hmi;

    return status;
}

这里我介绍的比较简洁,因为在我之前的博客中已经介绍过这部分的内容了,可以参考这里:http://blog.csdn.net/zhangjie201412/article/details/7225617

好了,回到我们GPS模块的代码上来

之后就会调用

        err = module->methods->open(module, GPS_HARDWARE_MODULE_ID, &device);

来打开设备,来看下HAL中的代码

static int open_gps(const struct hw_module_t* module, char const* name,
        struct hw_device_t** device)
{
    struct gps_device_t *dev = malloc(sizeof(struct gps_device_t));
    memset(dev, 0, sizeof(*dev));

    dev->common.tag = HARDWARE_DEVICE_TAG;
    dev->common.version = 0;
    dev->common.module = (struct hw_module_t*)module;
//    dev->common.close = (int (*)(struct hw_device_t*))close_lights;
    dev->get_gps_interface = gps__get_gps_interface;

    *device = (struct hw_device_t*)dev;
    return 0;
}

这里只是做了一些初始化,然后把接口函数挂钩一下

    dev->get_gps_interface = gps__get_gps_interface;

这个回调函数很简单

static const GpsInterface  qemuGpsInterface = {
    sizeof(GpsInterface),
    qemu_gps_init,
    qemu_gps_start,
    qemu_gps_stop,
    qemu_gps_cleanup,
    qemu_gps_inject_time,
    qemu_gps_inject_location,
    qemu_gps_delete_aiding_data,
    qemu_gps_set_position_mode,
    qemu_gps_get_extension,
};

const GpsInterface* gps__get_gps_interface(struct gps_device_t* dev)
{
    return &qemuGpsInterface;
}

返回qemuGpsInterface结构体,这个机构提中就是一大堆的回调函数。

下面我们按照调用顺序来一个一个介绍这些回调函数。

首先就是qume_gps_init函数

static int
qemu_gps_init(GpsCallbacks* callbacks)
{
    GpsState*  s = _gps_state;

    if (!s->init)
        gps_state_init(s, callbacks);

    if (s->fd < 0)
        return -1;

    return 0;
}

这里我发现了一个很好玩的东西,这里这个GpsState* s是如何得到全局的实例的呢,是通过_gps_state,而_gps_state的定义是这样的

typedef struct {
    int                     init;
    int                     fd;
    GpsCallbacks            callbacks;
    pthread_t               thread;
    int                     control[2];
} GpsState;

static GpsState  _gps_state[1];

这里我的理解是在全局静态的定义了一个结构体指针,并分配了内存。

为何不在init函数中使用malloc来分配内存,然后使用呢,有点意思,现在还不知道有什么好处,难道只是卖弄吗?

好了,不多说了,接下去看调用的gps_state_init函数

在这之前,我来介绍下GpsState结构体中成员的作用吧

int init:

一个初始化的标志,为1表示初始化了,为0表示未初始化

int fd:

socket读写的文件描述符,如果是真实的硬件的话,应该是串口读写的描述符

callbacks:

这个是从jni传下来的回调函数,得到数据之后就回调

thread:

这个没什么好说的,就是一个线程

int control[2]:

本地使用的socket来进程间通信,会面会讲到。

继续init函数

static void
gps_state_init( GpsState*  state, GpsCallbacks* callbacks )
{
    state->init       = 1;
    state->control[0] = -1;
    state->control[1] = -1;
    state->fd         = -1;

    state->fd = qemud_channel_open(QEMU_CHANNEL_NAME);

    if (state->fd < 0) {
        D("no gps emulation detected");
        return;
    }

    D("gps emulation will read from '%s' qemud channel", QEMU_CHANNEL_NAME );

    if ( socketpair( AF_LOCAL, SOCK_STREAM, 0, state->control ) < 0 ) {
        LOGE("could not create thread control socket pair: %s", strerror(errno));
        goto Fail;
    }

    state->thread = callbacks->create_thread_cb( "gps_state_thread", gps_state_thread, state );

    if ( !state->thread ) {
        LOGE("could not create gps thread: %s", strerror(errno));
        goto Fail;
    }

    state->callbacks = *callbacks;

    D("gps state initialized");
    return;

Fail:
    gps_state_done( state );
}

首先书初始化赋值工作,看到没,把init变量赋值为1了。然后调用了qemud_channel_open函数来得到了adb tcp的socket文件描述符。然后调用socketpair创建本地的socket通信对来实现进程间通信,然后创建了线程,赋值回调函数,下图描述了代码执行的流程。

Android 驱动和系统开发 2. 解析模拟器GPS模块 (原创)

这图有点丑,不过大体思路还是清楚的,可以对照着代码看,这里使用的是event poll技术进行事件的处理,在线程中,把fd和control[1]加入了epoll中,设置为POLLIIN模式,当有事件发生是,就会调用相应的代码,这里的control[1],在这里做控制作用,只要是控制gps的开始和停止的,所以在线程外面对control[0]进行写操作的话,对应的control[1]就会收到相应的指令,然后采取措施。具体代码如下

static void
gps_state_thread( void*  arg )
{
    GpsState*   state = (GpsState*) arg;
    NmeaReader  reader[1];
    int         epoll_fd   = epoll_create(2);
    int         started    = 0;
    int         gps_fd     = state->fd;
    int         control_fd = state->control[1];

    nmea_reader_init( reader );

    // register control file descriptors for polling
    epoll_register( epoll_fd, control_fd );
    epoll_register( epoll_fd, gps_fd );

    D("gps thread running");

    // now loop
    for (;;) {
        struct epoll_event   events[2];
        int                  ne, nevents;

        nevents = epoll_wait( epoll_fd, events, 2, -1 );
        if (nevents < 0) {
            if (errno != EINTR)
                LOGE("epoll_wait() unexpected error: %s", strerror(errno));
            continue;
        }
        D("gps thread received %d events", nevents);
        for (ne = 0; ne < nevents; ne++) {
            if ((events[ne].events & (EPOLLERR|EPOLLHUP)) != 0) {
                LOGE("EPOLLERR or EPOLLHUP after epoll_wait() !?");
                return;
            }
            if ((events[ne].events & EPOLLIN) != 0) {
                int  fd = events[ne].data.fd;

                if (fd == control_fd)
                {
                    char  cmd = 255;
                    int   ret;
                    D("gps control fd event");
                    do {
                        ret = read( fd, &cmd, 1 );
                    } while (ret < 0 && errno == EINTR);

                    if (cmd == CMD_QUIT) {
                        D("gps thread quitting on demand");
                        return;
                    }
                    else if (cmd == CMD_START) {
                        if (!started) {
                            D("gps thread starting  location_cb=%p", state->callbacks.location_cb);
                            started = 1;
                            nmea_reader_set_callback( reader, state->callbacks.location_cb );
                        }
                    }
                    else if (cmd == CMD_STOP) {
                        if (started) {
                            D("gps thread stopping");
                            started = 0;
                            nmea_reader_set_callback( reader, NULL );
                        }
                    }
                }
                else if (fd == gps_fd)
                {
                    char  buff[32];
                    D("gps fd event");
                    for (;;) {
                        int  nn, ret;

                        ret = read( fd, buff, sizeof(buff) );
                        if (ret < 0) {
                            if (errno == EINTR)
                                continue;
                            if (errno != EWOULDBLOCK)
                                LOGE("error while reading from gps daemon socket: %s:", strerror(errno));
                            break;
                        }
                        D("received %d bytes: %.*s", ret, ret, buff);
                        for (nn = 0; nn < ret; nn++)
                            nmea_reader_addc( reader, buff[nn] );
                    }
                    D("gps fd event end");
                }
                else
                {
                    LOGE("epoll_wait() returned unkown fd %d ?", fd);
                }
            }
        }
    }
}


好了,android 模拟器的虚拟hal层就介绍到这边,下面来看一下geo fix命令的实现源码,我也是找了好久才找到的,在external/qemu/android/console.c中

static int
do_geo_fix( ControlClient  client, char*  args )
{
    // GEO_SAT2 provides bug backwards compatibility.
    enum { GEO_LONG = 0, GEO_LAT, GEO_ALT, GEO_SAT, GEO_SAT2, NUM_GEO_PARAMS };
    char*   p = args;
    int     top_param = -1;
    double  params[ NUM_GEO_PARAMS ];
    int     n_satellites = 1;

    static  int     last_time = 0;
    static  double  last_altitude = 0.;

    if (!p)
        p = "";

    /* tokenize */
    while (*p) {
        char*   end;
        double  val = strtod( p, &end );

        if (end == p) {
            control_write( client, "KO: argument '%s' is not a number\n", p );
            return -1;
        }

        params[++top_param] = val;
        if (top_param + 1 == NUM_GEO_PARAMS)
            break;

        p = end;
        while (*p && (p[0] == ' ' || p[0] == '\t'))
            p += 1;
    }

    /* sanity check */
    if (top_param < GEO_LAT) {
        control_write( client, "KO: not enough arguments: see 'help geo fix' for details\r\n" );
        return -1;
    }

    /* check number of satellites, must be integer between 1 and 12 */
    if (top_param >= GEO_SAT) {
        int sat_index = (top_param >= GEO_SAT2) ? GEO_SAT2 : GEO_SAT;
        n_satellites = (int) params[sat_index];
        if (n_satellites != params[sat_index]
            || n_satellites < 1 || n_satellites > 12) {
            control_write( client, "KO: invalid number of satellites. Must be an integer between 1 and 12\r\n");
            return -1;
        }
    }

    /* generate an NMEA sentence for this fix */
    {
        STRALLOC_DEFINE(s);
        double   val;
        int      deg, min;
        char     hemi;

        /* format overview:
         *    time of fix      123519     12:35:19 UTC
         *    latitude         4807.038   48 degrees, 07.038 minutes
         *    north/south      N or S
         *    longitude        01131.000  11 degrees, 31. minutes
         *    east/west        E or W
         *    fix quality      1          standard GPS fix
         *    satellites       1 to 12    number of satellites being tracked
         *    HDOP             <dontcare> horizontal dilution
         *    altitude         546.       altitude above sea-level
         *    altitude units   M          to indicate meters
         *    diff             <dontcare> height of sea-level above ellipsoid
         *    diff units       M          to indicate meters (should be <dontcare>)
         *    dgps age         <dontcare> time in seconds since last DGPS fix
         *    dgps sid         <dontcare> DGPS station id
         */

        /* first, the time */
        stralloc_add_format( s, "$GPGGA,%06d", last_time );
        last_time ++;

        /* then the latitude */
        hemi = 'N';
        val  = params[GEO_LAT];
        if (val < 0) {
            hemi = 'S';
            val  = -val;
        }
        deg = (int) val;
        val = 60*(val - deg);
        min = (int) val;
        val = 10000*(val - min);
        stralloc_add_format( s, ",%02d%02d.%04d,%c", deg, min, (int)val, hemi );

        /* the longitude */
        hemi = 'E';
        val  = params[GEO_LONG];
        if (val < 0) {
            hemi = 'W';
            val  = -val;
        }
        deg = (int) val;
        val = 60*(val - deg);
        min = (int) val;
        val = 10000*(val - min);
        stralloc_add_format( s, ",%02d%02d.%04d,%c", deg, min, (int)val, hemi );

        /* bogus fix quality, satellite count and dilution */
        stralloc_add_format( s, ",1,%02d,", n_satellites );

        /* optional altitude + bogus diff */
        if (top_param >= GEO_ALT) {
            stralloc_add_format( s, ",%.1g,M,0.,M", params[GEO_ALT] );
            last_altitude = params[GEO_ALT];
        } else {
            stralloc_add_str( s, ",,,," );
        }
        /* bogus rest and checksum */
        stralloc_add_str( s, ",,,*47" );

        /* send it, then free */
        android_gps_send_nmea( stralloc_cstr(s) );
        stralloc_reset( s );
    }
    return 0;
}

通过穿进去的经纬度,海拔等信息转化成NMEA格式的gps数据,然后通过socket发出去。


这部分就介绍到这里,之后会更精彩,哈哈。

希望这篇文章对读者有帮助,完全是参考android源码的,对我来说源码是最好的学习途径。