Android音频驱动-ASOC之创建设备节点
创建设备文件的方法:
第一种是使用mknod手工创建:mknod filename type major minor
第二种是自动创建设备节点:利用udev(mdev)来实现设备文件的自动创建,首先应保证支持udev(mdev),由busybox配置。
具体udev相关知识这里不详细阐述,可以移步Linux 文件系统与设备文件系统 —— udev 设备文件系统,这里主要讲使用方法。
在驱动用加入对udev 的支持主要做的就是:在驱动初始化的代码里调用class_create(…)为该设备创建一个class,再为每个设备调用device_create(…)创建对应的设备。内核中定义的struct class结构体,顾名思义,一个struct class结构体类型变量对应一个类,内核同时提供了class_create(…)函数,可以用它来创建一个类,这个类存放于sysfs下面,一旦创建好了这个类,再调用 device_create(…)函数来在/dev目录下创建相应的设备节点。这样,加载模块的时候,用户空间中的udev会自动响应 device_create()函数,去/sysfs下寻找对应的类从而创建设备节点。
利用cat /proc/devices查看申请到的设备名,设备号。
例1,创建单个字符设备
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
MODULE_LICENSE ("GPL");
int hello_major = 555;
int hello_minor = 0;
int number_of_devices = 1;
struct cdev cdev;
dev_t dev = 0;
struct file_operations hello_fops = {
.owner = THIS_MODULE
};
static void char_reg_setup_cdev (void)
{
int error, devno = MKDEV (hello_major, hello_minor);
cdev_init (&cdev, &hello_fops);
cdev.owner = THIS_MODULE;
cdev.ops = &hello_fops;
error = cdev_add (&cdev, devno , 1);//将设备加入到内核
if (error)
printk (KERN_NOTICE "Error %d adding char_reg_setup_cdev", error);
}
struct class *my_class;
static int __init hello_2_init (void)
{
int result;
dev = MKDEV (hello_major, hello_minor);
result = register_chrdev_region (dev, number_of_devices, "hello");//主设备号为dev,次设备号为0
if (result<0) {
printk (KERN_WARNING "hello: can't get major number %d\n", hello_major);
return result;
}
char_reg_setup_cdev ();
/* create your own class under /sysfs */
my_class = class_create(THIS_MODULE, "my_class");
if(IS_ERR(my_class))
{
printk("Err: failed in creating class.\n");
return -1;
}
/* register your own device in sysfs, and this will cause udev to create corresponding device node */
device_create( my_class, NULL, MKDEV(hello_major, 0), "hello" "%d", 0 );
printk (KERN_INFO "Registered character driver\n");
return 0;
}
static void __exit hello_2_exit (void)
{
dev_t devno = MKDEV (hello_major, hello_minor);
cdev_del (&cdev);
device_destroy(my_class, MKDEV(adc_major, 0)); //delete device node under /dev
class_destroy(my_class); //delete class created by us
unregister_chrdev_region (devno, number_of_devices);
printk (KERN_INFO "char driver cleaned up\n");
}
module_init (hello_2_init);
module_exit (hello_2_exit);
这样,模块加载后,就能在/dev目录下找到hello0这个设备节点了。
例2,创建多个字符设备
drivers/i2c/i2c-dev.c
/*
* module load/unload record keeping
*/
static int __init i2c_dev_init(void)
{
int res;
printk(KERN_INFO "i2c /dev entries driver\n");
res = register_chrdev(I2C_MAJOR, "i2c", &i2cdev_fops);
if (res)
goto out;
i2c_dev_class = class_create(THIS_MODULE, "i2c-dev"); //创建一个名称为i2c-dev的class
if (IS_ERR(i2c_dev_class)) {
res = PTR_ERR(i2c_dev_class);
goto out_unreg_chrdev;
}
res = i2c_add_driver(&i2cdev_driver);
if (res)
goto out_unreg_class;
return 0;
out_unreg_class:
class_destroy(i2c_dev_class);
out_unreg_chrdev:
unregister_chrdev(I2C_MAJOR, "i2c");
out:
printk(KERN_ERR "%s: Driver Initialisation failed\n", __FILE__);
return res;
}
static int i2cdev_attach_adapter(struct i2c_adapter *adap)
{
struct i2c_dev *i2c_dev;
int res;
i2c_dev = get_free_i2c_dev(adap);
if (IS_ERR(i2c_dev))
return PTR_ERR(i2c_dev);
/* register this i2c device with the driver core */
i2c_dev->dev = device_create(i2c_dev_class, &adap->dev,
MKDEV(I2C_MAJOR, adap->nr), NULL,
"i2c-%d", adap->nr);
if (IS_ERR(i2c_dev->dev)) {
res = PTR_ERR(i2c_dev->dev);
goto error;
}
res = device_create_file(i2c_dev->dev, &dev_attr_name);
if (res)
goto error_destroy;
pr_debug("i2c-dev: adapter [%s] registered as minor %d\n",
adap->name, adap->nr);
return 0;
error_destroy:
device_destroy(i2c_dev_class, MKDEV(I2C_MAJOR, adap->nr));
error:
return_i2c_dev(i2c_dev);
return res;
}
在i2cdev_attach_adapter调用device_create(i2c_dev_class, &adap->dev,
MKDEV(I2C_MAJOR, adap->nr), NULL,
“i2c-%d”, adap->nr);
这样在dev目录就产生i2c-0 或i2c-1节点
例3
之前写字符设备驱动,都是使用register_chrdev向内核注册驱动程序中构建的file_operations结构体,之后创建的设备文件,只要是主设备号相同(次设备号不同),则绑定的都是同一个file_operations结构体,应用程序使用的也都是这一个结构体中注册的函数。这就会出现这样的一个弊端:同一类字符设备(即主设备号相同),会在内核中连续注册了256(分析内核代码中可知),也就是所以的此设备号都会被占用,而在大多数情况下都不会用到这么多次设备号,所以会造成极大的资源浪费。所以register_chrdev在某个角度上是有弊端的,这也是老版本内核中使用。
register_chrdev的注册,还分为静态注册和动态注册。而register_chrdev_region和alloc_chrdev_region正相当于将register_chrdev拆分来,它们分别是静态和动态注册的个体,但同时也解决了register_chrdev资源浪费的缺点。
register_chrdev_region允许注册一个规定的设备号的范围,也就不一定把0~255个此设备号都注册占用。
//from:要分配的设备号范围的起始值。
//count:所要求的连续设备编号个数。
//name:和该编号范围相关的设备名称。
register_chrdev_region(dev_t from, unsigned count, const char * name)
在2.6之后的内核,利用的是一个struct cdev结构体来描述一个字符设备。
struct cdev {
struct kobject kobj;
struct module *owner;
const struct file_operations *ops;
struct list_head list;
dev_t dev;
unsigned int count;
};
void cdev_init(struct cdev *, const struct file_operations *);//清空cdev,并填充file_operations 结构体
int cdev_add(struct cdev *, dev_t, unsigned);//注册字符设备到内核
写一个简单的字符设备驱动,主设备号为major,只注册0~1两个此设备号,并创建主设备号为major,次设备号创建0,1,2三个设备文件。
利用应用程序打开这三个文件,看有什么现象(是否都能打开)
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
#include <asm/hardware.h>
#include <linux/poll.h>
#include <linux/cdev.h>
static int hello_open(struct inode *inode, struct file *filp)
{
printk("hello_open\n");
return 0;
}
//构建file_operations结构体
static struct file_operations hello_fops={
.owner=THIS_MODULE,
.open = hello_open,
};
static int major = 252;
static struct cdev hello_cdev;
static struct class* hello_class;
static struct class_device* hello_class_dev[3];
static int hello_init(void)
{
dev_t devid;
if(major==0)
{
alloc_chrdev_region(&devid,0,2,"hello");
major=MAJOR(devid);
}
else
{
devid=MKDEV(major,0);//获取设备号
//主设备号为major,次设备号为0,1,对应file_operations
register_chrdev_region(devid,2,"hello");
}
cdev_init(&hello_cdev,&hello_fops);//字符设备初始化
cdev_add(&hello_cdev,devid,2);//添加字符设备到内核中
hello_class=class_create(THIS_MODULE,"hello");//创建类
int i;
for(i=0;i<3;i++)
{ //自动创建设备
hello_class_dev[i]=device_create(hello_class,NULL,MKDEV(major,i),NULL,"hello%d",i);
}
return 0;
}
static void hello_exit(void)
{
cdev_del(&hello_cdev);
unregister_chrdev_region(MKDEV(major,0),2);
int i;
for(i=0;i<3;i++)
{
class_device_destroy(hello_class, MKDEV(major, i));
}
class_destroy(hello_class);
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
应用程序很简单:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
int main(int argc, char const *argv[])
{
int fd=open(argv[1],O_RDWR);
if(-1==fd)
{
printf("Can‘t open!\n");
return ;
}
printf("Open OK!\n");
return 0;
}
从此可以看出,现在只有(252,0)和(252,1)对应了驱动程序中的file_operations结构体,而(252,2)虽然也是一个存在的设备文件,
但是由于驱动程序中没有它对应的file_operations结构体,所以应用程序打开它的时候被拒绝了。
下面可以看几个class几个名字的对应关系:
上一篇: (37)0环与3环通信——创建设备方式
下一篇: vue 实现循环div拖拽变换位置