欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Java NIO使用及原理分析(二)

程序员文章站 2022-07-14 16:16:31
...

转载自:李会军•宁静致远

在第一篇中,我们介绍了NIO中的两个核心对象:缓冲区和通道,在谈到缓冲区时,我们说缓冲区对象本质上是一个数组,但它其实是一个特殊的数组,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况,如果我们使用get()方法从缓冲区获取数据或者使用put()方法把数据写入缓冲区,都会引起缓冲区状态的变化。本文为NIO使用及原理分析的第二篇,将会分析NIO中的Buffer对象。

在缓冲区中,最重要的属性有下面三个,它们一起合作完成对缓冲区内部状态的变化跟踪:

position:指定了下一个将要被写入或者读取的元素索引,它的值由get()/put()方法自动更新,在新创建一个Buffer对象时,position被初始化为0。

limit:指定还有多少数据需要取出(在从缓冲区写入通道时),或者还有多少空间可以放入数据(在从通道读入缓冲区时)。

capacity:指定了可以存储在缓冲区中的最大数据容量,实际上,它指定了底层数组的大小,或者至少是指定了准许我们使用的底层数组的容量。

以上四个属性值之间有一些相对大小的关系:0 <= position <= limit <= capacity。如果我们创建一个新的容量大小为10的ByteBuffer对象,在初始化的时候,position设置为0,limit和 capacity被设置为10,在以后使用ByteBuffer对象过程中,capacity的值不会再发生变化,而其它两个个将会随着使用而变化。四个属性值分别如图所示:

Java NIO使用及原理分析(二)

现在我们可以从通道中读取一些数据到缓冲区中,注意从通道读取数据,相当于往缓冲区中写入数据。如果读取4个自己的数据,则此时position的值为4,即下一个将要被写入的字节索引为4,而limit仍然是10,如下图所示:

Java NIO使用及原理分析(二)

下一步把读取的数据写入到输出通道中,相当于从缓冲区中读取数据,在此之前,必须调用flip()方法,该方法将会完成两件事情:

1. 把limit设置为当前的position值
2. 把position设置为0

由于position被设置为0,所以可以保证在下一步输出时读取到的是缓冲区中的第一个字节,而limit被设置为当前的position,可以保证读取的数据正好是之前写入到缓冲区中的数据,如下图所示:

Java NIO使用及原理分析(二)

现在调用get()方法从缓冲区中读取数据写入到输出通道,这会导致position的增加而limit保持不变,但position不会超过limit的值,所以在读取我们之前写入到缓冲区中的4个自己之后,position和limit的值都为4,如下图所示:

Java NIO使用及原理分析(二)

在从缓冲区中读取数据完毕后,limit的值仍然保持在我们调用flip()方法时的值,调用clear()方法能够把所有的状态变化设置为初始化时的值,如下图所示:

Java NIO使用及原理分析(二)

最后我们用一段代码来验证这个过程,如下所示:

  1. import java.io.*;  
  2. import java.nio.*;  
  3. import java.nio.channels.*;  
  4.   
  5. public class Program {  
  6.     public static void main(String args[]) throws Exception {  
  7.         FileInputStream fin = new FileInputStream(“d:\\test.txt”);  
  8.         FileChannel fc = fin.getChannel();  
  9.   
  10.         ByteBuffer buffer = ByteBuffer.allocate(10);  
  11.         output(”初始化”, buffer);  
  12.   
  13.         fc.read(buffer);  
  14.         output(”调用read()”, buffer);  
  15.   
  16.         buffer.flip();  
  17.         output(”调用flip()”, buffer);  
  18.   
  19.         while (buffer.remaining() > 0) {  
  20.             byte b = buffer.get();  
  21.             // System.out.print(((char)b));  
  22.         }  
  23.         output(”调用get()”, buffer);  
  24.   
  25.         buffer.clear();  
  26.         output(”调用clear()”, buffer);  
  27.   
  28.         fin.close();  
  29.     }  
  30.   
  31.     public static void output(String step, Buffer buffer) {  
  32.         System.out.println(step + ” : ”);  
  33.         System.out.print(”capacity: ” + buffer.capacity() + “, ”);  
  34.         System.out.print(”position: ” + buffer.position() + “, ”);  
  35.         System.out.println(”limit: ” + buffer.limit());  
  36.         System.out.println();  
  37.     }  
  38. }  
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class Program {
    public static void main(String args[]) throws Exception {
        FileInputStream fin = new FileInputStream("d:\\test.txt");
        FileChannel fc = fin.getChannel();

        ByteBuffer buffer = ByteBuffer.allocate(10);
        output("初始化", buffer);

        fc.read(buffer);
        output("调用read()", buffer);

        buffer.flip();
        output("调用flip()", buffer);

        while (buffer.remaining() > 0) {
            byte b = buffer.get();
            // System.out.print(((char)b));
        }
        output("调用get()", buffer);

        buffer.clear();
        output("调用clear()", buffer);

        fin.close();
    }

    public static void output(String step, Buffer buffer) {
        System.out.println(step + " : ");
        System.out.print("capacity: " + buffer.capacity() + ", ");
        System.out.print("position: " + buffer.position() + ", ");
        System.out.println("limit: " + buffer.limit());
        System.out.println();
    }
}

完成的输出结果为:

Java NIO使用及原理分析(二)

这与我们上面演示的过程一致。在后面的文章中,我们继续介绍NIO中关于缓冲区一些更高级的使用。

(未完待续)


转载自:李会军•宁静致远

在第一篇中,我们介绍了NIO中的两个核心对象:缓冲区和通道,在谈到缓冲区时,我们说缓冲区对象本质上是一个数组,但它其实是一个特殊的数组,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况,如果我们使用get()方法从缓冲区获取数据或者使用put()方法把数据写入缓冲区,都会引起缓冲区状态的变化。本文为NIO使用及原理分析的第二篇,将会分析NIO中的Buffer对象。

在缓冲区中,最重要的属性有下面三个,它们一起合作完成对缓冲区内部状态的变化跟踪:

position:指定了下一个将要被写入或者读取的元素索引,它的值由get()/put()方法自动更新,在新创建一个Buffer对象时,position被初始化为0。

limit:指定还有多少数据需要取出(在从缓冲区写入通道时),或者还有多少空间可以放入数据(在从通道读入缓冲区时)。

capacity:指定了可以存储在缓冲区中的最大数据容量,实际上,它指定了底层数组的大小,或者至少是指定了准许我们使用的底层数组的容量。

以上四个属性值之间有一些相对大小的关系:0 <= position <= limit <= capacity。如果我们创建一个新的容量大小为10的ByteBuffer对象,在初始化的时候,position设置为0,limit和 capacity被设置为10,在以后使用ByteBuffer对象过程中,capacity的值不会再发生变化,而其它两个个将会随着使用而变化。四个属性值分别如图所示:

Java NIO使用及原理分析(二)

现在我们可以从通道中读取一些数据到缓冲区中,注意从通道读取数据,相当于往缓冲区中写入数据。如果读取4个自己的数据,则此时position的值为4,即下一个将要被写入的字节索引为4,而limit仍然是10,如下图所示:

Java NIO使用及原理分析(二)

下一步把读取的数据写入到输出通道中,相当于从缓冲区中读取数据,在此之前,必须调用flip()方法,该方法将会完成两件事情:

1. 把limit设置为当前的position值
2. 把position设置为0

由于position被设置为0,所以可以保证在下一步输出时读取到的是缓冲区中的第一个字节,而limit被设置为当前的position,可以保证读取的数据正好是之前写入到缓冲区中的数据,如下图所示:

Java NIO使用及原理分析(二)

现在调用get()方法从缓冲区中读取数据写入到输出通道,这会导致position的增加而limit保持不变,但position不会超过limit的值,所以在读取我们之前写入到缓冲区中的4个自己之后,position和limit的值都为4,如下图所示:

Java NIO使用及原理分析(二)

在从缓冲区中读取数据完毕后,limit的值仍然保持在我们调用flip()方法时的值,调用clear()方法能够把所有的状态变化设置为初始化时的值,如下图所示:

Java NIO使用及原理分析(二)

最后我们用一段代码来验证这个过程,如下所示:

  1. import java.io.*;  
  2. import java.nio.*;  
  3. import java.nio.channels.*;  
  4.   
  5. public class Program {  
  6.     public static void main(String args[]) throws Exception {  
  7.         FileInputStream fin = new FileInputStream(“d:\\test.txt”);  
  8.         FileChannel fc = fin.getChannel();  
  9.   
  10.         ByteBuffer buffer = ByteBuffer.allocate(10);  
  11.         output(”初始化”, buffer);  
  12.   
  13.         fc.read(buffer);  
  14.         output(”调用read()”, buffer);  
  15.   
  16.         buffer.flip();  
  17.         output(”调用flip()”, buffer);  
  18.   
  19.         while (buffer.remaining() > 0) {  
  20.             byte b = buffer.get();  
  21.             // System.out.print(((char)b));  
  22.         }  
  23.         output(”调用get()”, buffer);  
  24.   
  25.         buffer.clear();  
  26.         output(”调用clear()”, buffer);  
  27.   
  28.         fin.close();  
  29.     }  
  30.   
  31.     public static void output(String step, Buffer buffer) {  
  32.         System.out.println(step + ” : ”);  
  33.         System.out.print(”capacity: ” + buffer.capacity() + “, ”);  
  34.         System.out.print(”position: ” + buffer.position() + “, ”);  
  35.         System.out.println(”limit: ” + buffer.limit());  
  36.         System.out.println();  
  37.     }  
  38. }  
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class Program {
    public static void main(String args[]) throws Exception {
        FileInputStream fin = new FileInputStream("d:\\test.txt");
        FileChannel fc = fin.getChannel();

        ByteBuffer buffer = ByteBuffer.allocate(10);
        output("初始化", buffer);

        fc.read(buffer);
        output("调用read()", buffer);

        buffer.flip();
        output("调用flip()", buffer);

        while (buffer.remaining() > 0) {
            byte b = buffer.get();
            // System.out.print(((char)b));
        }
        output("调用get()", buffer);

        buffer.clear();
        output("调用clear()", buffer);

        fin.close();
    }

    public static void output(String step, Buffer buffer) {
        System.out.println(step + " : ");
        System.out.print("capacity: " + buffer.capacity() + ", ");
        System.out.print("position: " + buffer.position() + ", ");
        System.out.println("limit: " + buffer.limit());
        System.out.println();
    }
}

完成的输出结果为:

Java NIO使用及原理分析(二)

这与我们上面演示的过程一致。在后面的文章中,我们继续介绍NIO中关于缓冲区一些更高级的使用。

(未完待续)