欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Win10使用Face_ recognition+openCV人脸检测以及识别

程序员文章站 2022-07-14 15:15:07
...

Face_ recognition+openCV人脸识别

本章利用face-recognition库进行图片、视频端的人脸识别

环境:win10,python3.6,dlib19.7.0,face_recognition1.2.3

Face_ recognition的安装配置

1.Window下通过Anaconda创建face_python虚拟环境并**,可参考Anaconda使用笔记

conda create -n face_python python=3.6
conda env list
conda activate face_python

Win10使用Face_ recognition+openCV人脸检测以及识别

务必选择python3.6版本

2.安装dlib
安装包链接:https://pypi.org/simple/dlib/
Win10使用Face_ recognition+openCV人脸检测以及识别

下载完成之后,cmd到对应文件夹:

pip install dlib-19.7.0-cp36-cp36m-win_amd64.whl

安装Dlib库,这里Dlib一定要安装19.7.0以上的版本,不然会有很多麻烦。

3.安装face_python

使用pip指令安装face_recognition,安装时候可能需要*…

pip install face_recognition

4.安装opencv_python

pip install opencv_python

配置Pycharm

新建一个项目名为Face_python,把python环境更改到face_python。可参考Pycharm简易使用教程

Face_recognition API测试

import face_recognition
import cv2
image = face_recognition.load_image_file('dilireba_1.jpg')
face_locations = face_recognition.face_locations(image)
cv2.imshow('img',image)
cv2.waitKey()

Win10使用Face_ recognition+openCV人脸检测以及识别

会显示出背景发蓝的照片。

照片中的人脸识别

通过比较两张照片中的人脸特征来判断是否是同一个人
先读取一张照片作为数据训练,获取encoding
然后在读取一张照片获取encoding与之前的比较来判断

import face_recognition
import time

picture_of_me = face_recognition.load_image_file('dilireba_1.jpg')
my_face_encoding = face_recognition.face_encodings(picture_of_me)[0]

start = time.clock()
unknown_picture = face_recognition.load_image_file('E:\\PycharmProjects\\Face_python\\'
                                                   'data\\dataset\\images\\dilireba\\dilireba_4.jpg')
unknown_face_encoding = face_recognition.face_encodings(unknown_picture)[0]

results = face_recognition.compare_faces([my_face_encoding], unknown_face_encoding)
end = time.clock()
print(end - start)
if results[0]:
    print("迪丽热巴")

Win10使用Face_ recognition+openCV人脸检测以及识别

视频中实时人脸识别

通过openCV获取实时视频,从视频中抽帧获取照片来进行识别,识别以后再通过openCV显示。

import face_recognition
import cv2

# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
#   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
#   2. Only detect faces in every other frame of video.

# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.

# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)

# Load a sample picture and learn how to recognize it.
Chaowentao_image = face_recognition.load_image_file("E:\\PycharmProjects\\Face_python\\"
                                                 "data\\dataset\\images\\test\\ChaoWentao.jpg")
Chaowentao_face_encoding = face_recognition.face_encodings(Chaowentao_image)[0]

# Load a second sample picture and learn how to recognize it.
Tongliya_image = face_recognition.load_image_file("E:\\PycharmProjects\\Face_python\\"
                                                  "data\\dataset\\images\\test\\TongLiYa.jpg")
Tongliya_face_encoding = face_recognition.face_encodings(Tongliya_image)[0]

Tangyan_image = face_recognition.load_image_file("E:\\PycharmProjects\\Face_python\\"
                                                 "data\\dataset\\images\\test\\TangYan.jpg")
Tangyan_face_encoding = face_recognition.face_encodings(Tangyan_image)[0]

# Tangyan_image =


# Create arrays of known face encodings and their names
known_face_encodings = [
    Chaowentao_face_encoding,
    Tongliya_face_encoding,
    Tangyan_face_encoding
]
known_face_names = [
    "Chao Wentao",
    "Tong Liya",
    "Tang Yan"
]

# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]

    # Only process every other frame of video to save time
    if process_this_frame:
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

        face_names = []
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
            name = "Unknown"

            # If a match was found in known_face_encodings, just use the first one.
            if True in matches:
                first_match_index = matches.index(True)
                name = known_face_names[first_match_index]

            face_names.append(name)

    process_this_frame = not process_this_frame

    # Display the results
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 255), 2)

        # Draw a label with a name below the face
        # cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 255, 255), cv2.FILLED)
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 0, 255), 2)

    # Display the resulting image
    cv2.imshow('Video', frame)

    # Hit 'q' on the keyboard to quit!
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

Win10使用Face_ recognition+openCV人脸检测以及识别

参考链接

face_recognition
https://github.com/ageitgey/face_recognition

从零开始人脸识别:face-recognition库
https://blog.csdn.net/qq_34374211/article/details/81481298

Face_ recognition+openCV人脸检测以及识别,附源码
https://blog.csdn.net/Free_FFF/article/details/88674500

Anaconda使用笔记
https://zhuanlan.zhihu.com/p/57612562

Pycharm简易使用教程
https://zhuanlan.zhihu.com/p/52470112