欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

1143 Lowest Common Ancestor

程序员文章站 2022-07-14 14:49:33
...
1143 Lowest Common Ancestor1143 Lowest Common Ancestor

题目大意

给定一棵BST树的先序遍历,再给出任意两个节点(不一定存在该节点),让你输出两个节点的最低公共祖先。

思路解析

本题有两种做法,下面分别介绍:
1. 法一:见到BST就要想到中序遍历、从小到大、先序还原的特性。但本题难就难在先序还原上。以前的做法都是按照先序序列逐个insert,但如果对于一棵单支树,也就是最差的情况复杂度将会上升到N的平方级。所以本题不能通过该方法建树,而是采用最原始的先序中序序列建树,这种方法可以降为logN。剩下的lca操作不变。
2. 法二:第二种就是投机取巧,如果在考场上大脑还足够活跃的话可以试试该法:在BST中两个节点与最低公共祖先必然是单调的。所以,从先序中找到第一个满足关系: u < pre[j] < v 的节点就是所求答案。

示例代码(法一)

#include<iostream>
#include<algorithm>
#include<vector>
#include<unordered_map>
using namespace std;
struct node{
public:
	int val;
	struct node* left, *right;
};
vector<int> pre, inorder;
node* build(node* tree, int l1, int r1, int l2, int r2) {
	if (l1 > r1) return NULL;
	if (l1 == r1) {
		node* nod = new node();
		nod->val = pre[l1];
		return nod;
	}
	int cnt = 0;
	int root;
	for (root = l2; root <= r2; root++) {
		cnt++;
		if (inorder[root] == pre[l1]) break;
	}
	tree = new node();
	tree->val = inorder[root];
	tree->left = build(tree->left, l1 + 1, l1 + cnt - 1, l2, root - 1);
	tree->right = build(tree->right, l1 + cnt, r1, root + 1, r2);
	return tree;
}
node* lca(node* tree, int a, int b) {//默认 a < b
	if (tree->val < a) return lca(tree->right, a, b);
	if (tree->val > b) return lca(tree->left, a, b);
	return tree;
}
int main() {
	int m, n;
	scanf("%d %d", &m, &n);
	pre.resize(n);
	inorder.resize(n);
	unordered_map<int, bool> mapp;
	node* tree = NULL;
	for (int i = 0; i < n; i++) {
		int val;
		scanf("%d", &val);
		pre[i] = val;
		mapp[val] = true;
	}
	inorder = pre;
	sort(inorder.begin(), inorder.end());
	tree = build(tree, 0, n - 1, 0, n - 1);
	for (int i = 0; i < m; i++) {
		int a, b;
		scanf("%d %d", &a, &b);
		if (mapp[a] == false && mapp[b] == false) {
			printf("ERROR: %d and %d are not found.\n", a, b);
		}
		else if (mapp[a] == false) {
			printf("ERROR: %d is not found.\n", a);
		}
		else if (mapp[b] == false) {
			printf("ERROR: %d is not found.\n", b);
		}
		else {
			node* root = lca(tree, min(a, b), max(a, b));
			if (root->val == a || root->val == b) {
				printf("%d is an ancestor of %d.\n", root->val, root->val == a ? b : a);
			}
			else {
				printf("LCA of %d and %d is %d.\n", a, b, root->val);
			}
		}
		
	}
	return 0;
}

示例代码(法二)

#include<iostream>
#include<vector>
#include<algorithm>
#include<map>
using namespace std;
int main() {
	int m, n;
	scanf("%d %d", &m, &n);
	vector<int> vec(n);
	map<int, int> order;
	for (int i = 0; i < n; i++) {
		scanf("%d", &vec[i]);
		order[vec[i]] = i;
	}
	for (int i = 0; i < m; i++) {
		int a, b;
		scanf("%d %d", &a, &b);
		int mi = min(a, b);
		int ma = max(a, b);
		if (order.find(a) == order.end() && order.find(b) == order.end()) {
			printf("ERROR: %d and %d are not found.\n", a, b);
		}
		else if (order.find(a) == order.end()) {
			printf("ERROR: %d is not found.\n", a);
		}
		else if (order.find(b) == order.end()) {
			printf("ERROR: %d is not found.\n", b);
		}
		else {
			bool flag = true;
			int root;
			for (int j = 0; j < n; j++) {
				root = vec[j];
				if (root >= mi && root <= ma) {
					break;
				}
			}
			if (root == a || root == b) {
				printf("%d is an ancestor of %d.\n", root, root == a ? b : a);
			}
			else {
				printf("LCA of %d and %d is %d.\n", a, b, root);
			}
		}
	}
	return 0;
}