手把手教你用 SQL 实现电商产品用户分析(ORACLE)
程序员文章站
2022-03-01 20:21:15
...
--1.创建用户行为表 CREATE TABLE EVENTS ( DATES DATE, USER_ID VARCHAR2(50), ITEM_ID VARCHAR2(50), BEHAVIOR VARCHAR2(50) ); COMMENT ON TABLE EVENTS IS '用户行为表'; COMMENT ON COLUMN EVENTS.DATES IS '日期'; COMMENT ON COLUMN EVENTS.USER_ID IS '用户ID'; COMMENT ON COLUMN EVENTS.ITEM_ID IS '产品ID'; COMMENT ON COLUMN EVENTS.BEHAVIOR IS 'pv-浏览/点击、fav-收藏、cart-加入购物车、buy-下单支付'; --2.插入测试数据 TRUNCATE TABLE EVENTS; INSERT INTO EVENTS(DATES,USER_ID,ITEM_ID,BEHAVIOR) SELECT TO_DATE('20201125', 'YYYYMMDD') + ABS(MOD(DBMS_RANDOM.RANDOM, 30)), '0000' || ABS(MOD(DBMS_RANDOM.RANDOM, 10)), 'ISSUE_0'||ABS(MOD(DBMS_RANDOM.RANDOM, 10)), DECODE(ABS(MOD(DBMS_RANDOM.RANDOM, 6)), 0, 'PV', 1, 'PV', 2, 'PV', 3, 'BUY', 4, 'FAV', 'CART') FROM dual CONNECT BY ROWNUM <= 100; COMMIT; --3.统计PV、UV、以及pv/uv --pv page view数 SELECT COUNT(*) AS PV, COUNT(DISTINCT T.USER_ID) AS UV, COUNT(*) / COUNT(DISTINCT T.USER_ID) PVDIVUV FROM EVENTS T WHERE T.BEHAVIOR = 'PV'; --4.购买用户数 SELECT COUNT(DISTINCT T.USER_ID) FROM EVENTS T WHERE T.BEHAVIOR = 'BUY'; --5.平均日浏览量 SELECT AVG(PV) FROM (SELECT T.DATES, COUNT(*) PV FROM EVENTS T WHERE T.BEHAVIOR = 'PV' GROUP BY T.DATES) D; --6.平均日用户量 SELECT AVG(UV) FROM (SELECT T.DATES, COUNT(DISTINCT USER_ID) UV FROM EVENTS T WHERE T.BEHAVIOR = 'PV' GROUP BY T.DATES) D; --7.Bounce rate 跳出率(只有一次点击行为的用户/总用户数) --假设只有一个页面可以浏览,用户点进页面后要么收藏加购付款,要么跳出。 SELECT SUM(BOUNCE_USER) BOUNCE_USERS, SUM(TOTAL_USER) TOTAL_USERS, SUM(BOUNCE_USER) / SUM(TOTAL_USER) BOUNCE_RATE FROM (SELECT COUNT(T1.USER_ID) BOUNCE_USER, 0 AS TOTAL_USER FROM EVENTS T1 WHERE T1.BEHAVIOR = 'PV' AND NOT EXISTS (SELECT 1 FROM EVENTS T2 WHERE T2.BEHAVIOR IN ('FAV', 'CART', 'BUY') AND T1.USER_ID = T2.USER_ID) UNION ALL SELECT 0 AS BOUNCE_USER, COUNT(DISTINCT USER_ID) AS TOTAL_USER FROM EVENTS) T; --8.漏斗分析 --转化率是以页面访问(PV) -> 加入购物车(CART)/收藏(FAV) -> 购买(BUY)路径为基准进行的计算, --并且将收藏和加入购物车的行为进行了合并(考虑到这两个阶段不分先后顺序,而且都是确定购买意向的行为) SELECT TOTAL_CLICKED_USER, --总访问用户数 PV_TO_CART_FAV_USERS, --加入购物车/收藏用户数 PV_TO_BUY_USERS, --购买用户数 PV_TO_CART_FAV_USERS/TOTAL_CLICKED_USER as pv_to_fav_cart_ratio, --访问->购物车/收藏转化率 PV_TO_BUY_USERS/TOTAL_CLICKED_USER as pv_to_buy_ratio --访问->购物车/收藏->购买转化率 FROM ( SELECT SUM(CASE WHEN T.PV_FLAG = 1 THEN 1 ELSE 0 END) TOTAL_CLICKED_USER, SUM(CASE WHEN T.PV_FLAG = 1 AND (T.FAV_FLAG = 1 OR T.CART_FLAG = 1) THEN 1 ELSE 0 END) PV_TO_CART_FAV_USERS, SUM(CASE WHEN T.PV_FLAG = 1 AND (T.FAV_FLAG = 1 OR T.CART_FLAG = 1) AND T.BUY_FLAG = 1 THEN 1 ELSE 0 END) PV_TO_BUY_USERS FROM ( SELECT USER_ID,MAX(CASE WHEN E.BEHAVIOR = 'PV' THEN 1 ELSE 0 END) PV_FLAG, MAX(CASE WHEN E.BEHAVIOR = 'FAV' THEN 1 ELSE 0 END) FAV_FLAG, MAX(CASE WHEN E.BEHAVIOR = 'CART' THEN 1 ELSE 0 END) CART_FLAG, MAX(CASE WHEN E.BEHAVIOR = 'BUY' THEN 1 ELSE 0 END) BUY_FLAG FROM EVENTS E GROUP BY USER_ID )T ) TAR; --9.每日新增购买/访问用户数 SELECT FRIST_DATES, COUNT(*) USERS FROM (SELECT E.USER_ID, MIN(DATES) FRIST_DATES FROM EVENTS E WHERE E.BEHAVIOR = 'PV' GROUP BY E.USER_ID) T GROUP BY FRIST_DATES; SELECT FRIST_DATES, COUNT(*) USERS FROM (SELECT E.USER_ID, MIN(DATES) FRIST_DATES FROM EVENTS E WHERE E.BEHAVIOR = 'BUY' GROUP BY E.USER_ID) T GROUP BY FRIST_DATES; --10.留存分析,同期群分析(同期群(cohort)是一组在特定时间做同样事的人) SELECT * FROM (SELECT MIN_WEEK, COUNT(*) TOTAL_USERS FROM (SELECT USER_ID, TO_CHAR(MIN(DATES), 'ww') MIN_WEEK FROM EVENTS T WHERE T.BEHAVIOR = 'BUY' GROUP BY USER_ID) GROUP BY MIN_WEEK) WEEKLY_USER LEFT JOIN (SELECT MIN_WEEK, TO_CHAR(DATA_BUY.DATES, 'WW') - FIRWK_USER.MIN_WEEK WEEK_GAP, COUNT(DISTINCT FIRWK_USER.USER_ID) REBUY_USERS FROM (SELECT USER_ID, TO_CHAR(MIN(DATES), 'WW') MIN_WEEK FROM EVENTS T WHERE T.BEHAVIOR = 'BUY' GROUP BY USER_ID) FIRWK_USER INNER JOIN (SELECT * FROM EVENTS T WHERE T.BEHAVIOR = 'BUY') DATA_BUY ON FIRWK_USER.USER_ID = DATA_BUY.USER_ID GROUP BY MIN_WEEK, TO_CHAR(DATA_BUY.DATES, 'WW') - FIRWK_USER.MIN_WEEK) USERS_PER_WEEK ON WEEKLY_USER.MIN_WEEK = USERS_PER_WEEK.MIN_WEEK; --11.复购分析 SELECT COUNT(USER_ID) DIS_BUYUSER, COUNT(CASE WHEN CNT > 1 THEN USER_ID ELSE NULL END) REBUY_USER, COUNT(CASE WHEN CNT > 1 THEN USER_ID ELSE NULL END) / COUNT(USER_ID) REBUY_USER_RATIO FROM (SELECT USER_ID, COUNT(*) CNT FROM EVENTS T WHERE T.BEHAVIOR = 'BUY' GROUP BY USER_ID) S; --12.用户复购次数分布 SELECT BUY_REQ, USERS, SUM(USERS) OVER(ORDER BY BUY_REQ) CUM_USERS, SUM(USERS) OVER(ORDER BY BUY_REQ) / SUM(USERS) OVER() CUM_PCT_RATIO FROM (SELECT BUY_REQ, COUNT(DISTINCT USER_ID) USERS FROM (SELECT USER_ID, COUNT(*) BUY_REQ FROM EVENTS T WHERE T.BEHAVIOR = 'BUY' GROUP BY USER_ID) T GROUP BY BUY_REQ);