不使用synchronized和lock,如何实现一个线程安全的单例
C类:可以使用饿汉模式实现单例。如:
public class Singleton {
private static Singleton instance = new Singleton();
private Singleton (){}
public static Singleton getInstance() {
return instance;
}
}
B类:
除了以上两种方式,还有一种办法,就是通过静态内部类来实现,代码如下:
public class Singleton {
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();
}
private Singleton (){}
public static final Singleton getInstance() {
return SingletonHolder.INSTANCE;
}
}
A类:
除了以上方式,还可以使用枚举的方式,如:
public enum Singleton {
INSTANCE;
public void whateverMethod() {
}
}
以上几种答案,其实现原理都是利用借助了类加载的时候初始化单例。即借助了ClassLoader的线程安全机制。
所谓ClassLoader的线程安全机制,就是ClassLoader的loadClass方法在加载类的时候使用了synchronized关键字。也正是因为这样, 除非被重写,这个方法默认在整个装载过程中都是同步的,也就是保证了线程安全。
所以,以上各种方法,虽然并没有显示的使用synchronized,但是还是其底层实现原理还是用到了synchronized。
A+类:
有的,那就是使用CAS。
CAS是项乐观锁技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。实现单例的方式如下:
public class Singleton {
private static final AtomicReference INSTANCE = new AtomicReference();
private Singleton() {}
public static Singleton getInstance() {
for (;???? {
Singleton singleton = INSTANCE.get();
if (null != singleton) {
return singleton;
}
singleton = new Singleton();
if (INSTANCE.compareAndSet(null, singleton)) {
return singleton;
}
}
}
}
用CAS的好处在于不需要使用传统的锁机制来保证线程安全,CAS是一种基于忙等待的算法,依赖底层硬件的实现,相对于锁它没有线程切换和阻塞的额外消耗,可以支持较大的并行度。
CAS的一个重要缺点在于如果忙等待一直执行不成功(一直在死循环中),会对CPU造成较大的执行开销。
另外,如果N个线程同时执行到singleton = new Singleton();的时候,会有大量对象创建,很可能导致内存溢出。
上一篇: 线程安全及实现
下一篇: throws_Keyword