欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

16.Spark Streaming源码解读之数据清理机制解析 sparkSpark Streaming源码解析RDD数据清理 

程序员文章站 2022-07-13 15:45:31
...

原创文章,转载请注明:转载自听风居士博客(http://zhou-yuefei.iteye.com/)

本期内容:

一、Spark Streaming 数据清理总览

二、Spark Streaming 数据清理过程详解

三、Spark Streaming 数据清理的触发机制

 

    Spark Streaming不像普通Spark 的应用程序,普通Spark程序运行完成后,中间数据会随着SparkContext的关闭而被销毁,而Spark Streaming一直在运行,不断计算,每一秒中在不断运行都会产生大量的中间数据,所以需要对对象及元数据需要定期清理。每个batch duration运行时不断触发job后需要清理rdd和元数据。下面我们就结合源码详细解析一下Spark Streaming程序的数据清理机制。

 

一、数据清理总览

    Spark Streaming 运行过程中,随着时间不断产生Job,当job运行结束后,需要清理相应的数据(RDD,元数据信息,Checkpoint数据),Job由JobGenerator定时产生,数据的清理也是有JobGenerator负责。

    JobGenerator负责数据清理控制的代码位于一个消息循环体eventLoop中:

 

eventLoop =newEventLoop[JobGeneratorEvent]("JobGenerator"){
override protected def onReceive(event:JobGeneratorEvent):Unit= processEvent(event)
 
override protected def onError(e:Throwable):Unit={
jobScheduler.reportError("Error in job generator", e)
}
}
eventLoop.start()
 
其中的核心逻辑位于processEvent(event)函数中:
 
/** Processes all events */
private def processEvent(event:JobGeneratorEvent){
logDebug("Got event "+ event)
event match {
caseGenerateJobs(time)=> generateJobs(time)
caseClearMetadata(time)=> clearMetadata(time)
caseDoCheckpoint(time, clearCheckpointDataLater)=>
doCheckpoint(time, clearCheckpointDataLater)
caseClearCheckpointData(time)=> clearCheckpointData(time)
}
}
 
可以看到当JobGenerator收到ClearMetadata(time) 和 ClearCheckpointData(time)是会进行相应的数据清理,其中 clearMetadata(time)会清理RDD数据和一些元数据信息, ClearCheckpointData(time)会清理Checkpoint数据。
 
二、数据清理过程详解
    2.1 ClearMetaData 过程详解
首先看一下clearMetaData函数的处理逻辑:
/** Clear DStream metadata for the given `time`. */
private def clearMetadata(time:Time){
ssc.graph.clearMetadata(time)
 
// If checkpointing is enabled, then checkpoint,
// else mark batch to be fully processed
if(shouldCheckpoint){
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater =true))
}else{
// If checkpointing is not enabled, then delete metadata information about
// received blocks (block data not saved in any case). Otherwise, wait for
// checkpointing of this batch to complete.
val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
markBatchFullyProcessed(time)
}
}
 
首先调用了DStreamGraph的clearMetadata方法:
 
def clearMetadata(time:Time){
logDebug("Clearing metadata for time "+ time)
this.synchronized{
outputStreams.foreach(_.clearMetadata(time))
}
logDebug("Cleared old metadata for time "+ time)
}
 
这里调用了所有OutputDStream (关于DStream 的分类请参考http://blog.csdn.net/zhouzx2010/article/details/51460790)的clearMetadata方法
 
private[streaming] def clearMetadata(time:Time){
val unpersistData = ssc.conf.getBoolean("spark.streaming.unpersist",true)
//获取需要清理的RDD
val oldRDDs = generatedRDDs.filter(_._1 <=(time - rememberDuration))
logDebug("Clearing references to old RDDs: ["+
oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ")+"]")
 
//将要清除的RDD从generatedRDDs 中清除
generatedRDDs --= oldRDDs.keys
if(unpersistData){
logDebug(s"Unpersisting old RDDs: ${oldRDDs.values.map(_.id).mkString(",")}")
oldRDDs.values.foreach { rdd =>
    //将RDD 从persistence列表中移除
rdd.unpersist(false)
// Explicitly remove blocks of BlockRDD
rdd match {
case b:BlockRDD[_]=>
logInfo(s"Removing blocks of RDD $b of time $time")
//移除RDD的block 数据
b.removeBlocks()
case _ =>
}
}
}
logDebug(s"Cleared ${oldRDDs.size} RDDs that were older than "+
s"${time - rememberDuration}: ${oldRDDs.keys.mkString(",")}")
//清除依赖的DStream
dependencies.foreach(_.clearMetadata(time))
}
 
关键的清理逻辑在代码中做了详细注释,首先清理DStream对应的RDD的元数据信息,然后清理RDD的数据,最后对DStream所依赖的DStream进行清理。
 
回到JobGenerator的clearMetadata函数:
 
if(shouldCheckpoint){
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater =true))
}else{
// If checkpointing is not enabled, then delete metadata information about
// received blocks (block data not saved in any case). Otherwise, wait for
// checkpointing of this batch to complete.
val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
markBatchFullyProcessed(time)
}
 
调用了ReceiverTracker的 cleanupOldBlocksAndBatches方法,最后调用了clearupOldBatches方法:
 
def cleanupOldBatches(cleanupThreshTime:Time, waitForCompletion:Boolean):Unit=synchronized{
require(cleanupThreshTime.milliseconds < clock.getTimeMillis())
val timesToCleanup = timeToAllocatedBlocks.keys.filter { _ < cleanupThreshTime }.toSeq
logInfo(s"Deleting batches: ${timesToCleanup.mkString("")}")
if(writeToLog(BatchCleanupEvent(timesToCleanup))){
//将要删除的Batch数据清除
timeToAllocatedBlocks --= timesToCleanup
//清理WAL日志
writeAheadLogOption.foreach(_.clean(cleanupThreshTime.milliseconds, waitForCompletion))
}else{
logWarning("Failed to acknowledge batch clean up in the Write Ahead Log.")
}
}
 
可以看到ReceiverTracker的clearupOldBatches方法清理了Receiver数据,也就是Batch数据和WAL日志数据。
最后对InputInfoTracker信息进行清理:
def cleanup(batchThreshTime:Time):Unit=synchronized{
val timesToCleanup = batchTimeToInputInfos.keys.filter(_ < batchThreshTime)
logInfo(s"remove old batch metadata: ${timesToCleanup.mkString("")}")
batchTimeToInputInfos --= timesToCleanup
}
这简单的清除了batchTimeToInputInfos 的输入信息。
 
2.2 ClearCheckPoint 过程详解
看一下clearCheckpointData的处理逻辑:
/** Clear DStream checkpoint data for the given `time`. */
private def clearCheckpointData(time:Time){
ssc.graph.clearCheckpointData(time)
 
// All the checkpoint information about which batches have been processed, etc have
// been saved to checkpoints, so its safe to delete block metadata and data WAL files
val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
markBatchFullyProcessed(time)
}
 
后面的ReceiverTraker和InputInforTracker的清理逻辑和ClearMetaData的相同,这分析DStreamGraph的clearCheckpointData方法:
 
def clearCheckpointData(time:Time){
logInfo("Clearing checkpoint data for time "+ time)
this.synchronized{
outputStreams.foreach(_.clearCheckpointData(time))
}
logInfo("Cleared checkpoint data for time "+ time)
}
 
同样的调用了DStreamGraph中所有OutputDStream的clearCheckPiontData 方法:
 
private[streaming] def clearCheckpointData(time:Time){
logDebug("Clearing checkpoint data")
checkpointData.cleanup(time)
dependencies.foreach(_.clearCheckpointData(time))
logDebug("Cleared checkpoint data")
}
 
这里的核心逻辑在checkpointData.cleanup(time)方法,这里的CheckpointData 是 DStreamCheckpointData对象, DStreamCheckpointData的clearup方法如下:
def cleanup(time:Time){
// 获取需要清理的Checkpoint 文件 时间
timeToOldestCheckpointFileTime.remove(time) match {
caseSome(lastCheckpointFileTime)=>
//获取需要删除的文件
val filesToDelete = timeToCheckpointFile.filter(_._1 < lastCheckpointFileTime)
logDebug("Files to delete:\n"+ filesToDelete.mkString(","))
filesToDelete.foreach {
case(time, file)=>
try{
val path =newPath(file)
if(fileSystem ==null){
fileSystem = path.getFileSystem(dstream.ssc.sparkContext.hadoopConfiguration)
}
//  删除文件     
fileSystem.delete(path,true)
timeToCheckpointFile -= time
logInfo("Deleted checkpoint file '"+ file +"' for time "+ time)
}catch{
case e:Exception=>
logWarning("Error deleting old checkpoint file '"+ file +"' for time "+ time, e)
fileSystem =null
}
}
caseNone=>
logDebug("Nothing to delete")
}
}
 
可以看到checkpoint的清理,就是删除了指定时间以前的checkpoint文件。
 
三、数据清理的触发
    3.1 ClearMetaData 过程的触发
JobGenerator 生成job后,交给JobHandler执行, JobHandler的run方法中,会在job执行完后给JobScheduler 发送JobCompleted消息:
_eventLoop = eventLoop
if(_eventLoop !=null){
_eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
 
}
JobScheduler 收到JobCompleted 消息调用 handleJobCompletion 方法,源码如下:
 
private def processEvent(event:JobSchedulerEvent){
try{
event match {
caseJobStarted(job, startTime)=> handleJobStart(job, startTime)
caseJobCompleted(job, completedTime)=> handleJobCompletion(job, completedTime)
caseErrorReported(m, e)=> handleError(m, e)
}
}catch{
case e:Throwable=>
reportError("Error in job scheduler", e)
}
}
 
在 JobScheduler 的handleJobCompletion方法中会调用JobGenerator的onBatchCompletion方法,我们看一下JobGenerator的 onBatchCompletion 方法的源码:
 
def onBatchCompletion(time:Time){
eventLoop.post(ClearMetadata(time))
}
 
可以看到JobGenerator的onBatchCompletion方法给自己发送了ClearMetadata消息从而触发了ClearMetaData操作。
 
3.2 ClearCheckPoint 过程的触发
    清理CheckPoint数据发生在CheckPoint完成之后,我们先看一下CheckPointHandler的run方法:
 
// All done, print success
val finishTime =System.currentTimeMillis()
logInfo("Checkpoint for time "+ checkpointTime +" saved to file '"+ checkpointFile +
"', took "+ bytes.length +" bytes and "+(finishTime - startTime)+" ms")
//调用JobGenerator的方法进行checkpoint数据清理
jobGenerator.onCheckpointCompletion(checkpointTime, clearCheckpointDataLater)
return
 
可以看到在checkpoint完成后,会调用JobGenerator的onCheckpointCompletion方法进行checkpoint数据清理,我查看JobGenerator的onCheckpointCompletion方法源码:
 
def onCheckpointCompletion(time:Time, clearCheckpointDataLater:Boolean){
if(clearCheckpointDataLater){
eventLoop.post(ClearCheckpointData(time))
}
}
 
可以看到JobGenerator的onCheckpointCompletion方法中首先对传进来的 clearCheckpointDataLater 参数进行判断,如果该参数为true,就会给JobGenerator的eventLoop循环体发送ClearCheckpointData消息,从而触发clearCheckpointData 方法的调用,进行Checkpoint数据的清理。
什么时候该参数会true呢?
我们回到JobGenerator的 ClearMetadata 方法:
 
private def clearMetadata(time:Time){
ssc.graph.clearMetadata(time)
 
 
if(shouldCheckpoint){
//发送DoCheckpoint消息,并进行相应的Checkpoint数据清理
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater =true))
}else{
 
val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
markBatchFullyProcessed(time)
}
}
 
可以看到在clearMetadata方法中,发送了DoCheckpoint消息,其中参数 clearCheckpointDataLater 为ture。Generator的eventLoop收到该消息后调用 doCheckpoint 方法:
 
private def doCheckpoint(time:Time, clearCheckpointDataLater:Boolean){
if(shouldCheckpoint &&(time - graph.zeroTime).isMultipleOf(ssc.checkpointDuration)){
logInfo("Checkpointing graph for time "+ time)
ssc.graph.updateCheckpointData(time)
checkpointWriter.write(newCheckpoint(ssc, time), clearCheckpointDataLater)
}
}
 
这里关键一步:调用了CheckpointWriter的write方法,注意此时参数 clearCheckpointDataLater 为true。我们进入该方法:
 
def write(checkpoint:Checkpoint, clearCheckpointDataLater:Boolean){
try{
val bytes =Checkpoint.serialize(checkpoint, conf)
//将参数clearCheckpointDataLater传入CheckpoitWriteHandler
executor.execute(newCheckpointWriteHandler(
checkpoint.checkpointTime, bytes, clearCheckpointDataLater))
logInfo("Submitted checkpoint of time "+ checkpoint.checkpointTime +" writer queue")
}catch{
case rej:RejectedExecutionException=>
logError("Could not submit checkpoint task to the thread pool executor", rej)
}
}
 
可以看到此时参数 clearCheckpointDataLater 传入CheckpointWriteHandler 。这样Checkpoint完成之后就会发送ClearCheckpointData消息给JobGenerator进行Checkpoint数据的清理。
 
原创文章,转载请注明:转载自 听风居士博客(http://zhou-yuefei.iteye.com/)