欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Spark 源码解析 : DAGScheduler中的DAG划分与提交

程序员文章站 2022-07-13 15:45:49
...

一、Spark 运行架构

 
Spark 运行架构如下图:
各个RDD之间存在着依赖关系,这些依赖关系形成有向无环图DAG,DAGScheduler对这些依赖关系形成的DAG,进行Stage划分,划分的规则很简单,从后往前回溯,遇到窄依赖加入本stage,遇见宽依赖进行Stage切分。完成了Stage的划分,DAGScheduler基于每个Stage生成TaskSet,并将TaskSet提交给TaskScheduler。TaskScheduler 负责具体的task调度,在Worker节点上启动task。
 
Spark 源码解析 : DAGScheduler中的DAG划分与提交
            
    
    博客分类: spark内核解密 spark内核源码解析任务调度 
 
二、源码解析:DAGScheduler中的DAG划分
    当RDD触发一个Action操作(如:colllect)后,导致SparkContext.runJob的执行。而在SparkContext的run方法中会调用DAGScheduler的run方法最终调用了DAGScheduler的submit方法:
def submitJob[T, U](
rdd: RDD[T],
func:(TaskContext,Iterator[T])=> U,
partitions:Seq[Int],
callSite:CallSite,
resultHandler:(Int, U)=>Unit,
properties:Properties):JobWaiter[U]={
// Check to make sure we are not launching a task on a partition that does not exist.
val maxPartitions = rdd.partitions.length
partitions.find(p => p >= maxPartitions || p <0).foreach { p =>
thrownewIllegalArgumentException(
"Attempting to access a non-existent partition: "+ p +". "+
"Total number of partitions: "+ maxPartitions)
}
 
val jobId = nextJobId.getAndIncrement()
if(partitions.size ==0){
// Return immediately if the job is running 0 tasks
returnnewJobWaiter[U](this, jobId,0, resultHandler)
}
 
assert(partitions.size >0)
val func2 = func.asInstanceOf[(TaskContext,Iterator[_])=> _]
val waiter =newJobWaiter(this, jobId, partitions.size, resultHandler)
//给eventProcessLoop发送JobSubmitted消息
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
}
 
 
DAGScheduler的submit方法中,像eventProcessLoop对象发送了JobSubmitted消息。eventProcessLoop是DAGSchedulerEventProcessLoop类的对象
 
private[scheduler] val eventProcessLoop =newDAGSchedulerEventProcessLoop(this)
 
 
DAGSchedulerEventProcessLoop,接收各种消息并进行处理,处理的逻辑在其doOnReceive方法中:
 
private def doOnReceive(event:DAGSchedulerEvent):Unit= event match {
   //Job提交
caseJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)=>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
 
caseMapStageSubmitted(jobId, dependency, callSite, listener, properties)=>
dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
 
caseStageCancelled(stageId)=>
dagScheduler.handleStageCancellation(stageId)
 
caseJobCancelled(jobId)=>
dagScheduler.handleJobCancellation(jobId)
 
caseJobGroupCancelled(groupId)=>
dagScheduler.handleJobGroupCancelled(groupId)
 
caseAllJobsCancelled=>
dagScheduler.doCancelAllJobs()
 
caseExecutorAdded(execId, host)=>
dagScheduler.handleExecutorAdded(execId, host)
 
caseExecutorLost(execId)=>
dagScheduler.handleExecutorLost(execId, fetchFailed =false)
 
caseBeginEvent(task, taskInfo)=>
dagScheduler.handleBeginEvent(task, taskInfo)
 
caseGettingResultEvent(taskInfo)=>
dagScheduler.handleGetTaskResult(taskInfo)
 
case completion:CompletionEvent=>
dagScheduler.handleTaskCompletion(completion)
 
caseTaskSetFailed(taskSet, reason, exception)=>
dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
 
caseResubmitFailedStages=>
dagScheduler.resubmitFailedStages()
}
 
 
可以把DAGSchedulerEventProcessLoop理解成DAGScheduler的对外的功能接口。它对外隐藏了自己内部实现的细节。无论是内部还是外部消息,DAGScheduler可以共用同一消息处理代码,逻辑清晰,处理方式统一。
 
接下来分析DAGScheduler的Stage划分,handleJobSubmitted方法首先创建ResultStage
 
try{
//创建新stage可能出现异常,比如job运行依赖hdfs文文件被删除
finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
}catch{
case e:Exception=>
logWarning("Creating new stage failed due to exception - job: "+ jobId, e)
listener.jobFailed(e)
return
}
  
然后调用submitStage方法,进行stage的划分。
 
Spark 源码解析 : DAGScheduler中的DAG划分与提交
            
    
    博客分类: spark内核解密 spark内核源码解析任务调度 
 
首先由finalRDD获取它的父RDD依赖,判断依赖类型,如果是窄依赖,则将父RDD压入栈中,如果是宽依赖,则作为父Stage。
 
看一下源码的具体过程:
 
private def getMissingParentStages(stage:Stage):List[Stage]={
val missing =newHashSet[Stage] //存储需要返回的父Stage
val visited =newHashSet[RDD[_]] //存储访问过的RDD
//自己建立栈,以免函数的递归调用导致
val waitingForVisit =newStack[RDD[_]]
 
def visit(rdd: RDD[_]){
if(!visited(rdd)){
visited += rdd
val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
if(rddHasUncachedPartitions){
for(dep <- rdd.dependencies){
dep match {
case shufDep:ShuffleDependency[_, _, _]=>
val mapStage = getShuffleMapStage(shufDep, stage.firstJobId)
if(!mapStage.isAvailable){
missing += mapStage //遇到宽依赖,加入父stage
}
case narrowDep:NarrowDependency[_]=>
waitingForVisit.push(narrowDep.rdd) //窄依赖入栈,
}
}
}
}
}
 
   //回溯的起始RDD入栈
waitingForVisit.push(stage.rdd)
while(waitingForVisit.nonEmpty){
visit(waitingForVisit.pop())
}
missing.toList
}
 
 
getMissingParentStages方法是由当前stage,返回他的父stage,父stage的创建由getShuffleMapStage返回,最终会调用newOrUsedShuffleStage方法返回ShuffleMapStage
 
private def newOrUsedShuffleStage(
shuffleDep:ShuffleDependency[_, _, _],
firstJobId:Int):ShuffleMapStage={
val rdd = shuffleDep.rdd
val numTasks = rdd.partitions.length
val stage = newShuffleMapStage(rdd, numTasks, shuffleDep, firstJobId, rdd.creationSite)
if(mapOutputTracker.containsShuffle(shuffleDep.shuffleId)){
//Stage已经被计算过,从MapOutputTracker中获取计算结果
val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId)
val locs =MapOutputTracker.deserializeMapStatuses(serLocs)
(0 until locs.length).foreach { i =>
if(locs(i) ne null){
// locs(i) will be null if missing
stage.addOutputLoc(i, locs(i))
}
}
}else{
// Kind of ugly: need to register RDDs with the cache and map output tracker here
// since we can't do it in the RDD constructor because # of partitions is unknown
logInfo("Registering RDD "+ rdd.id +" ("+ rdd.getCreationSite +")")
mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
}
stage
}
 
 
现在父Stage已经划分好,下面看看你Stage的提交逻辑
 
/** Submits stage, but first recursively submits any missing parents. */
private def submitStage(stage:Stage){
val jobId = activeJobForStage(stage)
if(jobId.isDefined){
logDebug("submitStage("+ stage +")")
if(!waitingStages(stage)&&!runningStages(stage)&&!failedStages(stage)){
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: "+ missing)
if(missing.isEmpty){
logInfo("Submitting "+ stage +" ("+ stage.rdd +"), which has no missing parents")
//如果没有父stage,则提交当前stage
submitMissingTasks(stage, jobId.get)
}else{
for(parent <- missing){
//如果有父stage,则递归提交父stage
submitStage(parent)
}
waitingStages += stage
}
}
}else{
abortStage(stage,"No active job for stage "+ stage.id,None)
}
}
 
 提交的过程很简单,首先当前stage获取父stage,如果父stage为空,则当前Stage为起始stage,交给submitMissingTasks处理,如果当前stage不为空,则递归调用submitStage进行提交。
 
到这里,DAGScheduler中的DAG划分与提交就讲完了,下次解析这些stage是如果封装成TaskSet交给TaskScheduler以及TaskSchedule的调度过程。