UOJ #3265. 志愿者招募加强版
程序员文章站
2022-07-13 11:02:49
...
题意:
思路:线性规划的题都可以用网络流来解决。
具体思路是 差分之后每一对正的和负的之间连边。inf的边起调节作用。
#include <bits/stdc++.h>
using namespace std;
typedef int lint;
typedef long long LL;
const int inf = 0x3f3f3f3f;
const int maxk = 1000005;
struct EDGE {
int from, to, next, cost, cap; // 如果需要修改 cost为LL
};
namespace MFMC {
const static int maxn = 1011;
const static int maxm = 500005;
EDGE edge[maxm];
int tot, he[maxn], n;
void init(int _n) {
tot = 0;
n = _n + 1;
memset(he, -1, n * sizeof(int));
}
void Add(int u, int v, int cap,int cost) { // 如果需要修改 cost为LL
edge[tot] = EDGE{u, v, he[u], cost, cap};
he[u] = tot++;
}
void add(int u, int v, int cap,int cost) { // 如果需要修改 cost为LL
Add(u, v, cap,cost);
Add(v, u, 0,-cost);
}
//O(VE)
//record_e[i]是fa[i]->i的边的编号
template<typename DT>
void spfa(int s, DT dist[], int rec[]) {
queue<int> q;
static bool inq[maxn];
memset(dist, 0x3f, n * sizeof(DT));
memset(inq, 0, n * sizeof(bool));
memset(rec, -1, n * sizeof(int));
q.push(s);
dist[s] = 0;
while (!q.empty()) {
int u = q.front();
q.pop();
inq[u] = 0;
for (int e = he[u]; ~e; e = edge[e].next) {
if (0 == edge[e].cap)
continue;
int v = edge[e].to;
if (dist[v] > dist[u] + edge[e].cost) {
dist[v] = dist[u] + edge[e].cost;
rec[v] = e;
if (!inq[v]) {
q.push(v);
inq[v] = 1;
}
}
}
}
}
template<typename DT>
void dijkstra(int s, DT dist[], int rec[]) {
priority_queue<pair<DT, int> > q;//-dist, vertex
memset(dist, 0x3f, n * sizeof(DT));
memset(rec, -1, n * sizeof(int));
dist[s] = 0;
q.push(make_pair(0, s));
while (!q.empty()) {
s = q.top().second;
DT c = -q.top().first;
q.pop();
if (c != dist[s]) continue;
for (int e = he[s]; ~e; e = edge[e].next) {
if (0 == edge[e].cap) continue;
int v = edge[e].to;
if (dist[v] > c + edge[e].cost) {
dist[v] = c + edge[e].cost;
rec[v] = e;
q.push(make_pair(-dist[v], v));
}
}
}
}
//Need dijkstra_GRAPH_EDGES_PQ
//O(FE log(E)),F is the maximum flow
template<typename FT, typename CT>
void mfmc(int s, int t, FT &maxflow, CT &mincost) {
CT inf;
memset(&inf, 0x3f, sizeof(CT));
static CT dist[maxn];
static int rec_e[maxn];
maxflow = mincost = 0;
CT realdist = 0; //real distance from s to t
bool first = true;
while (1) {
if (first) {
spfa( s, dist, rec_e);
first = false;
} else {
//dijkstra( s, dist, rec_e);
spfa( s, dist, rec_e);
}
if (inf == dist[t])
break;
FT minF = numeric_limits<FT>::max();
for (int e = rec_e[t]; ~e; e = rec_e[edge[e].from])
minF = min(minF, (FT) edge[e].cap);
maxflow += minF;
realdist += dist[t];
mincost += minF * realdist;
for (int e = rec_e[t]; ~e; e = rec_e[edge[e].from]) {
edge[e].cap -= minF;
edge[e ^ 1].cap += minF;
}
for (int e = 0; e < tot; ++e) {
EDGE &ed = edge[e];
ed.cost += dist[ed.from] - dist[ed.to];
}
}
}
};
int l[maxk],r[maxk];
int main(){
int n,m,a;
scanf("%d%d",&n,&m);
int S = 0,T = n+2;
MFMC::init(T);
for( int i = 1;i <= n;i++ ){
scanf("%d",&a);
MFMC::add( i,T,a,0 );
MFMC::add( S,i+1,a,0 );
MFMC::add( i,i+1,inf,0 );
}
for( int i = 1;i <= m;i++ ){
int k;scanf("%d",&k);
for( int j = 1;j <= k;j++ ){
scanf("%d%d",&l[j],&r[j]);
}
int c;
scanf("%d",&c);
for( int j = 1;j <= k;j++ ){
MFMC::add( r[j]+1,l[j],inf,c );
}
}
int mincost,maxflow;
MFMC::mfmc(S,T,maxflow,mincost);
//cout << maxflow << endl;
printf("%d\n",mincost);
/*int x,num;
int n,m;
scanf("%d%d",&n,&m);
int S=0,T=n+2;
MFMC::init(T);*/
/*MFMC::add(S,1,inf,0);
for(int i=1;i<=n;++i) {
int x;scanf("%d",&x);
MFMC::add(i,i+1,inf-x,0);
}*/
/*for( int i = 1;i <= n;i++ ){
int a;
scanf("%d",&a);
MFMC::add( i,T,a,0 );
MFMC::add( S,i+1,a,0 );
MFMC::add( i,i+1,inf,0 );
}
for(int i=1;i<=m;++i) {
scanf("%d",&num);
for(int j=1;j<=num;++j) {
scanf("%d%d",&l[j],&r[j]);
}
scanf("%d",&x);
for(int j=1;j<=num;++j) MFMC::add(r[j]+1,l[j],inf,x);
}
int maxflow = 0,mincost = 0;
MFMC::mfmc( S,T,maxflow,mincost );
cout << maxflow << endl;
printf("%d\n",mincost);*/
return 0;
}
上一篇: D - Mayor's posters
推荐阅读