欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PyTorch实现L1,L2正则化以及Dropout

程序员文章站 2022-07-13 10:38:28
...

PyTorch实现L1,L2正则化以及Dropout

  1. 了解知道Dropout原理

  2. 用代码实现正则化(L1、L2、Dropout)

  3. Dropout的numpy实现

  4. PyTorch中实现dropout

    dropout是指在深度学习网络的训练过程中,对于神经网络单元,
    按照一定的概率将其暂时从网络中丢弃。(注意是暂时)
    

    对一层神经网络的实施dropout代码实现

d = np.random.rand(3, 2) < keep_drop
a = np.multiply(a, d)
a /= keep_drop
 //对**值进行缩放,为了不影响下一层网络的最后的预期输出值,加上这个步骤来修正损失的值

1.L1范数

L1范数是参数矩阵W中元素的绝对值之和,L1范数相对于L0范数不同点在于,L0范数求解是NP问题,而L1范数是L0范数的最优凸近似,求解较为容易。L1常被称为LASSO.

regularization_loss = 0
for param in model.parameters():
    regularization_loss += torch.sum(abs(param))

for epoch in range(EPOCHS):
    y_pred = model(x_train)
    classify_loss = criterion(y_pred, y_train.float().view(-1, 1))
    loss = classify_loss + 0.001 * regularization_loss  # 引入L1正则化项

2.L2范数

L2范数是参数矩阵W中元素的平方之和,这使得参数矩阵中的元素更稀疏,与前两个范数不同的是,它不会让参数变为0,而是使得参数大部分都接近于0。L1追求稀疏化,从而丢弃了一部分特征(参数为0),而L2范数只是使参数尽可能为0,保留了特征。L2被称为Rigde.

optimizer = torch.optim.SGD(model.parameters(), lr=1e-1, momentum=0.9, weight_decay=0.001)

Dropout的numpy实现

import numpy as np

X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])

y = np.array([[0,1,1,0]]).T

alpha,hidden_dim,dropout_percent,do_dropout = (0.5,4,0.2,True)

synapse_0 = 2*np.random.random((3,hidden_dim)) - 1

synapse_1 = 2*np.random.random((hidden_dim,1)) - 1

for j in xrange(60000):

    layer_1 = (1/(1+np.exp(-(np.dot(X,synapse_0)))))

    if(do_dropout):

        layer_1 *= np.random.binomial([np.ones((len(X),hidden_dim))],1-dropout_percent)[0] * (1.0/(1-dropout_percent))

    layer_2 = 1/(1+np.exp(-(np.dot(layer_1,synapse_1))))

    layer_2_delta = (layer_2 - y)*(layer_2*(1-layer_2))

    layer_1_delta = layer_2_delta.dot(synapse_1.T) * (layer_1 * (1-layer_1))

    synapse_1 -= (alpha * layer_1.T.dot(layer_2_delta))

    synapse_0 -= (alpha * X.T.dot(layer_1_delta))

PyTorch中实现dropout

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

N_SAMPLES = 20
N_HIDDEN = 300

# training data
x = torch.unsqueeze(torch.linspace(-1, 1, N_SAMPLES), 1)
y = x + 0.3*torch.normal(torch.zeros(N_SAMPLES, 1), torch.ones(N_SAMPLES, 1))
x, y = Variable(x), Variable(y)

# test data
test_x = torch.unsqueeze(torch.linspace(-1, 1, N_SAMPLES), 1)
test_y = test_x + 0.3*torch.normal(torch.zeros(N_SAMPLES, 1), torch.ones(N_SAMPLES, 1))
test_x, test_y = Variable(test_x, volatile=True), Variable(test_y, volatile=True)

# show data
'''
plt.scatter(x.data.numpy(), y.data.numpy(), c='magenta', s=50, alpha=0.5, label='train')
plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='cyan', s=50, alpha=0.5, label='test')
plt.legend(loc='upper left')
plt.ylim((-2.5, 2.5))
plt.show()
'''

net_overfitting = torch.nn.Sequential(
    torch.nn.Linear(1, N_HIDDEN),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, N_HIDDEN),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, 1),
)

net_dropped = torch.nn.Sequential(
    torch.nn.Linear(1, N_HIDDEN),
    torch.nn.Dropout(0.5),  # drop 50% of the neuron
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, N_HIDDEN),
    torch.nn.Dropout(0.5),  # drop 50% of the neuron
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, 1),
)

print(net_overfitting)  # net architecture
print(net_dropped)

optimizer_ofit = torch.optim.Adam(net_overfitting.parameters(), lr=0.01)
optimizer_drop = torch.optim.Adam(net_dropped.parameters(), lr=0.01)
loss_func = torch.nn.MSELoss()

plt.ion()   # something about plotting

for t in range(500):
    pred_ofit = net_overfitting(x)
    pred_drop = net_dropped(x)

    loss_ofit = loss_func(pred_ofit, y)
    loss_drop = loss_func(pred_drop, y)

    optimizer_ofit.zero_grad()
    optimizer_drop.zero_grad()
    loss_ofit.backward()
    loss_drop.backward()
    optimizer_ofit.step()
    optimizer_drop.step()

    if t % 10 == 0:
        # change to eval mode in order to fix drop out effect
        net_overfitting.eval()
        net_dropped.eval()  # parameters for dropout differ from train mode

        # plotting
        plt.cla()
        test_pred_ofit = net_overfitting(test_x)
        test_pred_drop = net_dropped(test_x)
        plt.scatter(x.data.numpy(), y.data.numpy(), c='magenta', s=50, alpha=0.3, label='train')
        plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='cyan', s=50, alpha=0.3, label='test')
        plt.plot(test_x.data.numpy(), test_pred_ofit.data.numpy(), 'r-', lw=3, label='overfitting')
        plt.plot(test_x.data.numpy(), test_pred_drop.data.numpy(), 'b--', lw=3, label='dropout(50%)')
        plt.text(0, -1.2, 'overfitting loss=%.4f' % loss_func(test_pred_ofit, test_y).data[0], fontdict={'size': 20, 'color':  'red'})
        plt.text(0, -1.5, 'dropout loss=%.4f' % loss_func(test_pred_drop, test_y).data[0], fontdict={'size': 20, 'color': 'blue'})
        plt.legend(loc='upper left'); plt.ylim((-2.5, 2.5));plt.pause(0.1)

        # change back to train mode
        net_overfitting.train()
        net_dropped.train()

plt.ioff()
plt.show()