欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

(lightgbm, xgboost, nn代码一)lightgbm做二分类,多分类以及回归任务(含python源码)

程序员文章站 2022-07-13 10:39:16
...

lightgbm做二分类,多分类以及回归任务(含python源码)

1. 简介

内心一直想把自己前一段时间写的代码整理一下,梳理一下知识点,方便以后查看,同时也方便和大家交流。希望我的分享能帮助到一些小白用户快速前进,也希望大家看到不足之处慷慨的指出,相互学习,快速成长。我将从三个部分介绍数据挖掘类比赛中常用的一些方法,分别是lightgbm、xgboost和keras实现的mlp模型,分别介绍他们实现的二分类任务、多分类任务和回归任务,并给出完整的开源python代码。这篇文章主要介绍基于lightgbm实现的三类任务。如果只需源码,可以直接跳到文章末尾链接

2.数据加载

该部分数据是基于拍拍贷比赛截取的一部分特征,随机选择了5000个训练数据,3000个测试数据。针对其中gender、cell_province等类别特征,直接进行重新编码处理。原始数据的lable是0-32,共有33个类别的数据。针对二分类任务,将原始label为32的数据直接转化为1,label为其他的数据转为0;回归问题就是将这些类别作为待预测的目标值。代码如下:其中gc是释放不必要的内存。

## category feature one_hot
test_data['label'] = -1
data = pd.concat([train_data, test_data])
cate_feature = ['gender', 'cell_province', 'id_province', 'id_city', 'rate', 'term']
for item in cate_feature:
    data[item] = LabelEncoder().fit_transform(data[item])

train = data[data['label'] != -1]
test = data[data['label'] == -1]

## Clean up the memory
del data, train_data, test_data
gc.collect()

## get train feature
del_feature = ['auditing_date', 'due_date', 'label']
features = [i for i in train.columns if i not in del_feature]

## Convert the label to two categories
train['label'] = train['label'].apply(lambda x: 1 if x==32 else 0)
train_x = train[features]
train_y = train['label'].values
test = test[features]

3.二分类任务

params = {'num_leaves': 60, #结果对最终效果影响较大,越大值越好,太大会出现过拟合
          'min_data_in_leaf': 30,
          'objective': 'binary', #定义的目标函数
          'max_depth': -1,
          'learning_rate': 0.03,
          "min_sum_hessian_in_leaf": 6,
          "boosting": "gbdt",
          "feature_fraction": 0.9,	#提取的特征比率
          "bagging_freq": 1,
          "bagging_fraction": 0.8,
          "bagging_seed": 11,
          "lambda_l1": 0.1,				#l1正则
          # 'lambda_l2': 0.001,		#l2正则
          "verbosity": -1,
          "nthread": -1,				#线程数量,-1表示全部线程,线程越多,运行的速度越快
          'metric': {'binary_logloss', 'auc'},	##评价函数选择
          "random_state": 2019,	#随机数种子,可以防止每次运行的结果不一致
          # 'device': 'gpu' ##如果安装的事gpu版本的lightgbm,可以加快运算
          }

folds = KFold(n_splits=5, shuffle=True, random_state=2019)
prob_oof = np.zeros((train_x.shape[0], ))
test_pred_prob = np.zeros((test.shape[0], ))


## train and predict
feature_importance_df = pd.DataFrame()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train)):
    print("fold {}".format(fold_ + 1))
    trn_data = lgb.Dataset(train_x.iloc[trn_idx], label=train_y[trn_idx])
    val_data = lgb.Dataset(train_x.iloc[val_idx], label=train_y[val_idx])


    clf = lgb.train(params,
                    trn_data,
                    num_round,
                    valid_sets=[trn_data, val_data],
                    verbose_eval=20,
                    early_stopping_rounds=60)
    prob_oof[val_idx] = clf.predict(train_x.iloc[val_idx], num_iteration=clf.best_iteration)

    fold_importance_df = pd.DataFrame()
    fold_importance_df["Feature"] = features
    fold_importance_df["importance"] = clf.feature_importance()
    fold_importance_df["fold"] = fold_ + 1
    feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)

    test_pred_prob += clf.predict(test[features], num_iteration=clf.best_iteration) / folds.n_splits

threshold = 0.5
for pred in test_pred_prob:
    result = 1 if pred > threshold else 0

上面的参数中目标函数采用的事binary,评价函数采用的是{'binary_logloss', 'auc'},可以根据需要对评价函数做调整,可以设定一个或者多个评价函数;'num_leaves'对最终的结果影响较大,如果值设置的过大会出现过拟合现象。

针对模型训练部分,采用的事5折交叉训练的方法,常用的5折统计有两种:StratifiedKFoldKFold,其中最大的不同是StratifiedKFold分层采样交叉切分,确保训练集,测试集中各类别样本的比例与原始数据集中相同,实际使用中可以根据具体的数据分别测试两者的表现。

最后fold_importance_df表存放的事模型的特征重要性,可以方便分析特征重要性

4.多分类任务

params = {'num_leaves': 60,
          'min_data_in_leaf': 30,
          'objective': 'multiclass',
          'num_class': 33,
          'max_depth': -1,
          'learning_rate': 0.03,
          "min_sum_hessian_in_leaf": 6,
          "boosting": "gbdt",
          "feature_fraction": 0.9,
          "bagging_freq": 1,
          "bagging_fraction": 0.8,
          "bagging_seed": 11,
          "lambda_l1": 0.1,
          "verbosity": -1,
          "nthread": 15,
          'metric': 'multi_logloss',
          "random_state": 2019,
          # 'device': 'gpu' 
          }


folds = KFold(n_splits=5, shuffle=True, random_state=2019)
prob_oof = np.zeros((train_x.shape[0], 33))
test_pred_prob = np.zeros((test.shape[0], 33))

## train and predict
feature_importance_df = pd.DataFrame()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train)):
    print("fold {}".format(fold_ + 1))
    trn_data = lgb.Dataset(train_x.iloc[trn_idx], label=train_y.iloc[trn_idx])
    val_data = lgb.Dataset(train_x.iloc[val_idx], label=train_y.iloc[val_idx])

    clf = lgb.train(params,
                    trn_data,
                    num_round,
                    valid_sets=[trn_data, val_data],
                    verbose_eval=20,
                    early_stopping_rounds=60)
    prob_oof[val_idx] = clf.predict(train_x.iloc[val_idx], num_iteration=clf.best_iteration)


    fold_importance_df = pd.DataFrame()
    fold_importance_df["Feature"] = features
    fold_importance_df["importance"] = clf.feature_importance()
    fold_importance_df["fold"] = fold_ + 1
    feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)

    test_pred_prob += clf.predict(test[features], num_iteration=clf.best_iteration) / folds.n_splits
result = np.argmax(test_pred_prob, axis=1)

该部分同上面最大的区别就是该表了损失函数和评价函数。分别更换为'multiclass''multi_logloss',当进行多分类任务是必须还要指定类别数:'num_class'

5.回归任务

params = {'num_leaves': 38,
          'min_data_in_leaf': 50,
          'objective': 'regression',
          'max_depth': -1,
          'learning_rate': 0.02,
          "min_sum_hessian_in_leaf": 6,
          "boosting": "gbdt",
          "feature_fraction": 0.9,
          "bagging_freq": 1,
          "bagging_fraction": 0.7,
          "bagging_seed": 11,
          "lambda_l1": 0.1,
          "verbosity": -1,
          "nthread": 4,
          'metric': 'mae',
          "random_state": 2019,
          # 'device': 'gpu'
          }


def mean_absolute_percentage_error(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / (y_true))) * 100

def smape_func(preds, dtrain):
    label = dtrain.get_label().values
    epsilon = 0.1
    summ = np.maximum(0.5 + epsilon, np.abs(label) + np.abs(preds) + epsilon)
    smape = np.mean(np.abs(label - preds) / summ) * 2
    return 'smape', float(smape), False


folds = KFold(n_splits=5, shuffle=True, random_state=2019)
oof = np.zeros(train_x.shape[0])
predictions = np.zeros(test.shape[0])

train_y = np.log1p(train_y) # Data smoothing
feature_importance_df = pd.DataFrame()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train_x)):
    print("fold {}".format(fold_ + 1))
    trn_data = lgb.Dataset(train_x.iloc[trn_idx], label=train_y.iloc[trn_idx])
    val_data = lgb.Dataset(train_x.iloc[val_idx], label=train_y.iloc[val_idx])


    clf = lgb.train(params,
                    trn_data,
                    num_round,
                    valid_sets=[trn_data, val_data],
                    verbose_eval=200,
                    early_stopping_rounds=200)
    oof[val_idx] = clf.predict(train_x.iloc[val_idx], num_iteration=clf.best_iteration)

    fold_importance_df = pd.DataFrame()
    fold_importance_df["Feature"] = features
    fold_importance_df["importance"] = clf.feature_importance()
    fold_importance_df["fold"] = fold_ + 1
    feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)

    predictions += clf.predict(test, num_iteration=clf.best_iteration) / folds.n_splits

print('mse %.6f' % mean_squared_error(train_y, oof))
print('mae %.6f' % mean_absolute_error(train_y, oof))

result = np.expm1(predictions) #reduction
result = predictions

在回归任务中对目标函数值添加了一个log平滑,如果待预测的结果值跨度很大,做log平滑很有很好的效果提升。
作者专栏:https://zhuanlan.zhihu.com/p/76615507