欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

三种人脸检测方法(opencv,dlib,openpose)的戴口罩识别效果测试

程序员文章站 2022-07-13 10:17:22
...

最近尝试做一个人脸检测控制机器人来测体温,记录一下过程:
1、首先使用了opencv-ython试了一下人脸检测,参考https://blog.csdn.net/qq_32892383/article/details/90732916
先跑了一下固定图片的,效果堪忧啊
三种人脸检测方法(opencv,dlib,openpose)的戴口罩识别效果测试
代码:


# -*- coding: utf-8 -*-
import c2
import lgging

# 设置日志
logging.basicConfig(level = logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
logger = logging.getLogger(__name__)

# 待检测的图片路径
ImagePath = '1.jpg'

# 读取图片
logger.info('Reading image...')
image = cv2.imread(ImagePath)
# 把图片转换为灰度模式
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 探测图片中的人脸
logger.info('Detect faces...')
# 获取训练好的人脸的参数数据,进行人脸检测
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(gray,scaleFactor=1.15,minNeighbors=5,minSize=(3, 3))

search_info = "Find %d face."%len(faces) if len(faces) <= 1 else "Find %d faces."%len(faces)
logger.info(search_info)

# 绘制人脸的矩形区域(红色边框)
for (x, y, w, h) in faces:
    cv2.rectangle(image, (x,y), (x+w,y+h), (0,0,255), 2)

# 显示图片
cv2.imshow('Find faces!', image)
cv2.waitKey(0)

ros环境下接收电脑摄像头的图像话题的实时检测代码:

# -*- coding: utf-8 -*-
#opencv固定图片检测
#2020.2.13
#by跃动的风
import cv2
import logging
import rospy
import roslib
from sensor_msgs.msg import Image
from geometry_msgs.msg import Pose
from cv_bridge import CvBridge,CvBridgeError

def ImageCB(data):
    bridge = CvBridge()
    image = bridge.imgmsg_to_cv2(data,"bgr8")
    # 把图片转换为灰度模式
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # 探测图片中的人脸
    #logger.info('Detect faces...')
    # 获取训练好的人脸的参数数据,进行人脸检测
    face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
    faces = face_cascade.detectMultiScale(gray,scaleFactor=1.15,minNeighbors=5,minSize=(3, 3))

    search_info = "Find %d face."%len(faces) if len(faces) <= 1 else "Find %d faces."%len(faces)
    rospy.loginfo(search_info)

    # 绘制人脸的矩形区域(红色边框)
    for (x, y, w, h) in faces:
        cv2.rectangle(image, (x,y), (x+w,y+h), (0,0,255), 2)

    cv2.imshow('Find faces!', image)
    cv2.waitKey(1)
##ROS Node 
if __name__ == '__main__':
    #face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
    try:
        rospy.init_node('face_detect', anonymous=True)
        rospy.loginfo('face_detect start...')
        pub = rospy.Publisher('/face_detection', Image, queue_size = 10)
        pub_face_coo = rospy.Publisher('/face_coo', Pose, queue_size = 3)
        rospy.Subscriber('/usb_cam/image_raw',Image, ImageCB)
        rospy.spin()
    except:
    	pass

2,使用dlib检测
参考https://blog.csdn.net/Nirvana_6174/article/details/89599136
效果尚可,但是不能检测戴口罩的人脸
三种人脸检测方法(opencv,dlib,openpose)的戴口罩识别效果测试
静态图片检测代码


import dlib
import numpy as np
import cv2

def rect_to_bb(rect): # 获得人脸矩形的坐标信息
    x = rect.left()
    y = rect.top()
    w = rect.right() - x
    h = rect.bottom() - y
    return (x, y, w, h)

def resize(image, width=1200):  # 将待检测的image进行resize
    r = width * 1.0 / image.shape[1]
    dim = (width, int(image.shape[0] * r))
    resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
    return resized

def detect():
    image_file = "1.jpg"
    detector = dlib.get_frontal_face_detector()
    image = cv2.imread(image_file)
    image = resize(image, width=1200)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    rects = detector(gray, 1)
    for (i, rect) in enumerate(rects):
        (x, y, w, h) = rect_to_bb(rect)
        cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(image, "Face: {}".format(i + 1), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    cv2.imshow("Output", image)
    cv2.waitKey(1)

if __name__ == "__main__":
    while 1:
        detect()
        if cv2.waitKey(1) & 0xFF == ord("q"):
             break

3,使用openpose检测
效果极佳,就是环境配置很费劲。放一张效果图,检测戴口罩的毫无压力:
三种人脸检测方法(opencv,dlib,openpose)的戴口罩识别效果测试
具体安装方法见另一篇文章https://blog.csdn.net/qq_23670601/article/details/104345718

相关标签: OpenCV openpose