欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

简单的人脸分类实战

程序员文章站 2022-07-13 10:17:22
...

因为对人脸识别比较感兴趣,故利用python自带的fetch_lfw_people库,尝试做一下人脸分类,记录一下学习过程。

Example: Face Recognition 人脸分类

As an example of support vector machines in action, let’s take a look at the facial recognition problem.
We will use the Labeled Faces in the Wild dataset, which consists of several thousand collated photos of various public figures.
A fetcher for the dataset is built into Scikit-Learn:

#用下内置的数据集:人脸数据集
from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

[‘Ariel Sharon’ ‘Colin Powell’ ‘Donald Rumsfeld’ ‘George W Bush’
‘Gerhard Schroeder’ ‘Hugo Chavez’ ‘Junichiro Koizumi’ ‘Tony Blair’]
(1348, 62, 47)

Let’s plot a few of these faces to see what we’re working with:

fig, ax = plt.subplots(3, 5)
for i, axi in enumerate(ax.flat):
    axi.imshow(faces.images[i], cmap='bone')
    axi.set(xticks=[], yticks=[],
            xlabel=faces.target_names[faces.target[i]])

简单的人脸分类实战

  • 每个图的大小是 [62×47]
  • 在这里我们就把每一个像素点当成了一个特征,但是这样特征太多了,用PCA降维一下吧!
from sklearn.svm import SVC
#from sklearn.decomposition import RandomizedPCA
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline

pca = PCA(n_components=150, whiten=True, random_state=42) #原始3000D==>150D
svc = SVC(kernel='rbf', class_weight='balanced')
model = make_pipeline(pca, svc)
from sklearn.model_selection import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(faces.data, faces.target,
                                                random_state=40)

使用grid search cross-validation来选择我们的参数

from sklearn.model_selection import GridSearchCV  #用来模型的参数选择
param_grid = {'svc__C': [1, 5, 10],
              'svc__gamma': [0.0001, 0.0005, 0.001]}
grid = GridSearchCV(model, param_grid)

%time grid.fit(Xtrain, ytrain)
print(grid.best_params_)

Wall time: 30.4 s
{‘svc__C’: 5, ‘svc__gamma’: 0.001}

model = grid.best_estimator_
yfit = model.predict(Xtest)
yfit.shape

(337,)

看一下效果

fig, ax = plt.subplots(4, 6)
for i, axi in enumerate(ax.flat):
    axi.imshow(Xtest[i].reshape(62, 47), cmap='bone')
    axi.set(xticks=[], yticks=[])
    axi.set_ylabel(faces.target_names[yfit[i]].split()[-1],
                   color='black' if yfit[i] == ytest[i] else 'red')
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14);

简单的人脸分类实战

from sklearn.metrics import classification_report
print(classification_report(ytest, yfit,
                            target_names=faces.target_names))

简单的人脸分类实战

  • 精度(precision) = 正确预测的个数(TP)/被预测正确的个数(TP+FP)
  • 召回率(recall)=正确预测的个数(TP)/预测个数(TP+FN)
  • F1 = 2精度召回率/(精度+召回率)
from sklearn.metrics import confusion_matrix  #混淆矩阵
mat = confusion_matrix(ytest, yfit)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
            xticklabels=faces.target_names,
            yticklabels=faces.target_names)
plt.xlabel('true label')
plt.ylabel('predicted label');

简单的人脸分类实战

对角线表示预测的比较对的,非对角线表示容易将横纵坐标的人弄混

  • 这样显示出来能帮助我们查看哪些人更容易弄混