欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

程序员文章站 2022-07-13 09:57:14
...

1.DFS(深度优先搜索)

搜索思想在图问题中能以最直观的方式展现。

深度优先搜索的步骤分为:

  1. 递归下去。
  2. 回溯上来。

顾名思义,深度优先,则是以深度为准则,先一条路走到底,直到达到目标。这里称之为递归下去。

否则既没有达到目标又无路可走了,那么则退回到上一步的状态,走其他路。这便是回溯上来。

下面结合具体例子来理解。

如图所示,在一个迷宫中,黑色块代表玩家所在位置,红色块代表终点,问是否有一条到终点的路径

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

我们用深度优先搜索的方法去解这道题,由图可知,我们可以走上下左右四个方向,我们规定按照左下右上的方向顺序走,即,如果左边可以走,我们先走左边。然后递归下去,没达到终点,我们再回溯上来,等又回溯到这个位置时,左边已经走过了,那么我们就走下边,按照这样的顺序与方向走。并且我们把走过的路标记一下代表走过,不能再走。

所以我们从黑色起点首先向左走,然后发现还可以向左走,最后我们到达图示位置

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

已经连续向左走到左上角的位置了,这时发现左边不能走了,这时我们就考虑往下走,发现也不能走,同理,上边也不能走,右边已经走过了也不能走,这时候无路可走了,代表这条路是死路不能帮我们解决问题,所以现在要回溯上去,回溯到上一个位置

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

在这个位置我们由上可知走左边是死路不行,上下是墙壁不能走,而右边又是走过的路,已经被标记过了,不能走。所以只能再度回溯到上一个位置寻找别的出路。

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

最终我们回溯到最初的位置,同理,左边证明是死路不必走了,上和右是墙壁,所以我们走下边。然后递归下去

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

到了这个格子,因为按照左下右上的顺序,我们走左边,递归下去

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

一直递归下去到最左边的格子,然后左边行不通,走下边。

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

然后达到目标。DFS的重要点在于状态回溯。

伪代码如下:

int goal_x = 9, goal_y = 9;     //目标的坐标,暂时设置为右下角
int n = 10 , m = 10;               //地图的宽高,设置为10 * 10的表格
int graph[n][m];        //地图
int used[n][m];         //用来标记地图上那些点是走过的
int px[] = {-1, 0, 1, 0};   //通过px 和 py数组来实现左下右上的移动顺序
int py[] = {0, -1, 0, 1};
int flag = 0;           //是否能达到终点的标志

void DFS(int graph[][], int used[], int x, int y)
{
    // 如果与目标坐标相同,则成功
    if (graph[x][y] == graph[goal_x][goal_y]) {     
        printf("successful");
        flag = 1;
        return ;
    }
    // 遍历四个方向
    for (int i = 0; i != 4; ++i) {    
        //如果没有走过这个格子          
        int new_x = x + px[i], new_y = y + py[i];
        if (new_x >= 0 && new_x < n && new_y >= 0 
            && new_y < m && used[new_x][new_y] == 0 && !flag) {
            
            used[new_x][new_y] = 1;     //将该格子设为走过

            DFS(graph, used, new_x, new_y);      //递归下去

            used[new_x][new_y] = 0;//状态回溯,退回来,将格子设置为未走过
        }
    }
}

2.DFS(广度优先搜索)

广度优先搜索较之深度优先搜索之不同在于,深度优先搜索旨在不管有多少条岔路,先一条路走到底,不成功就返回上一个路口然后就选择下一条岔路,而广度优先搜索旨在面临一个路口时,把所有的岔路口都记下来,然后选择其中一个进入,然后将它的分路情况记录下来,然后再返回来进入另外一个岔路,并重复这样的操作,用图形来表示则是这样的,例子同上

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

从黑色起点出发,记录所有的岔路口,并标记为走一步可以到达的。然后选择其中一个方向走进去,我们走黑点方块上面的那个,然后将这个路口可走的方向记录下来并标记为2,意味走两步可以到达的地方。

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

接下来,我们回到黑色方块右手边的1方块上,并将它能走的方向也记录下来,同样标记为2,因为也是走两步便可到达的地方

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

这样走一步以及走两步可以到达的地方都搜索完毕了,下面同理,我们可以迅速把三步的格子给标记出来

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

再之后是四步,五步。

数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解

我们便成功寻找到了路径,并且把所有可行的路径都求出来了。在广度优先搜索中,可以看出是逐步求解的,反复的进入与退出,将当前的所有可行解都记录下来,然后逐个去查看。在DFS中我们说关键点是递归以及回溯,在BFS中,关键点则是状态的选取和标记。

伪代码如下:

int n = 10, m = 10;                   //地图宽高
void BFS()
{
    queue que;              //用队列来保存路口
    int graph[n][m];          //地图
    int px[] = {-1, 0, 1, 0};   //移动方向的数组
    int py[] = {0, -1, 0, 1};
    que.push(起点入队);      //将起点入队
    while (!que.empty()) {    //只要队列不为空
        auto temp = que.pop();          //得到队列中的元素
        for (int i = 0; i != 4; ++i) {
            if(//可以走) {
                //标记当前格子
                //将当前状态入队列,等待下次提取
            }
        }
    } 
}

总结

数据结构上的运用

DFS用递归的形式,用到了栈结构,先进后出。

BDS选取状态用队列的形式,先进先出。

复杂度

DFS的复杂度与BFS的复杂度大体一致,不同之处在于遍历的方式与对于问题的解决出发点不同,DFS适合目标明确的任务,而BFS适合大范围的寻找。

思想

思想上来说都是穷竭列举所有的情况。