吴恩达 机器学习课程 coursera 第二次编程作业(Logistic Regression Regularized) python实现
程序员文章站
2022-07-13 08:52:05
...
本文是吴恩达机器学习课程的第二次编程作业:Logistic Regression Regularized 的扩展作业,用python实现。
本作业包含5个文件,分别是:
ex2_reg.py 主程序入口
predict.py 预测函数
gradientReg.py 梯度下降算法
costFunctionReg.py 代价函数算法
sigmoid.py 函数计算方法
作业文件和训练集数据下载地址:https://github.com/toanoyx/MachineLearning-AndrewNg-coursera-python/tree/master/ex2%20Logistic%20Regression/ex2_reg
下文是文件的源代码:
ex2_reg.py 主程序入口
import pandas as pd
import matplotlib.pyplot as plt
import scipy.optimize as opt
from costFunctionReg import *
from gradientReg import *
from predict import *
""" 第1部分 可视化数据集 """
path = 'ex2data2.txt'
data2 = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted'])
positive = data2[data2['Accepted'].isin([1])]
negative = data2[data2['Accepted'].isin([0])]
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive['Test 1'], positive['Test 2'], s=50, c='black', marker='+', label='y = 1')
ax.scatter(negative['Test 1'], negative['Test 2'], s=50, c='yellow', marker='o', label='y = 0')
ax.legend()
ax.set_xlabel('Microchip Test 1')
ax.set_ylabel('Microchip Test 2')
plt.show()
degree = 5
x1 = data2['Test 1']
x2 = data2['Test 2']
data2.insert(3, 'Ones', 1)
for i in range(1, degree):
for j in range(0, i):
data2['F' + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j)
data2.drop('Test 1', axis=1, inplace=True)
data2.drop('Test 2', axis=1, inplace=True)
""" 第2部分 正则化代价函数 """
cols = data2.shape[1]
X2 = data2.iloc[:,1:cols]
y2 = data2.iloc[:,0:1]
X2 = np.array(X2.values)
y2 = np.array(y2.values)
theta2 = np.zeros(11)
learningRate = 1
print("cost = " + str(costFunctionReg(theta2, X2, y2, learningRate)) + "(cost should be 0.693)")
print(str(gradientReg(theta2, X2, y2, learningRate)))
result2 = opt.fmin_tnc(func=costFunctionReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate))
print(result2)
theta_min = np.matrix(result2[0])
predictions = predict(theta_min, X2)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)]
accuracy = (sum(map(int, correct)) % len(correct))
print('accuracy = {0}%'.format(accuracy))
draw_boundary(power=6, l=1)
predict.py 预测函数
from sigmoid import *
def predict(theta, X):
probability = sigmoid(X * theta.T)
return [1 if x >= 0.5 else 0 for x in probability]
gradientReg.py 梯度下降算法
import numpy as np
from sigmoid import *
def gradientReg(theta, X, y, learningRate):
theta = np.matrix(theta)
X = np.matrix(X)
y = np.matrix(y)
parameters = int(theta.ravel().shape[1])
grad = np.zeros(parameters)
error = sigmoid(X * theta.T) - y
for i in range(parameters):
term = np.multiply(error, X[:, i])
if i == 0:
grad[i] = np.sum(term) / len(X)
else:
grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:, i])
return grad
costFunctionReg.py 代价函数算法
import numpy as np
from sigmoid import *
def costFunctionReg(theta, X, y, learningRate):
theta = np.matrix(theta)
X = np.matrix(X)
y = np.matrix(y)
first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:, 1:theta.shape[1]], 2))
return np.sum(first - second) / len(X) + reg
sigmoid.py 函数计算方法
import numpy as np
def sigmoid(z):
return 1 / (1 + np.exp(-z))
下一篇: 集成算法——Adaboost代码
推荐阅读
-
吴恩达 机器学习课程 coursera 第一次编程作业(Linear Regression Multi) python实现
-
吴恩达 机器学习课程 coursera 第二次编程作业(Logistic Regression Regularized) python实现
-
吴恩达 机器学习课程 coursera 第四次编程作业(Neural Network Back Propagation) python实现
-
吴恩达 机器学习课程 coursera 第三次编程作业(Neural Network) python实现
-
吴恩达 机器学习课程 coursera 第二次编程作业(Logistic Regression) python实现
-
吴恩达 机器学习课程 coursera 第一次编程作业(Linear Regression) python实现