欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

sklearn preprocessing 数据预处理(OneHotEncoder)

程序员文章站 2022-07-13 08:07:16
...
                     

0. StandardScaler

去均值时,在测试集上进行预测时减去的均值是训练集上得到的均值;

import sklearn.preprocessing as prepdef standard_scale(X_train, X_test): preprocessor = prep.StandardScaler().fit(X_train) X_train = preprocessor.transform(X_train) X_test = preprocessor.transform(X_test) return X_train, X_test
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

1. one hot encoder

<a href=“http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html”, target="_blank">sklearn.preprocessing.OneHotEncoder

one hot encoder 不仅对 label 可以进行编码,还可对 categorical feature 进行编码:

>>> from sklearn.preprocessing import OneHotEncoder>>> enc = OneHotEncoder()>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])  >>> enc.n_values_array([2, 3, 4])>>> enc.feature_indices_array([0, 2, 5, 9])>>> enc.transform([[0, 1, 1]]).toarray()array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

为 OneHotEncoder 类传递进来的数据集:

[[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
  • 1
  • 2
  • 3
  • 4

每一列代表一个属性,fit 操作之后:

  • 对象encn_values_成员变量,记录着每一个属性的最大取值数目,如本例第一个属性:0, 1, 0, 1 ⇒ 2,0, 1, 2, 0 ⇒ 3,3, 0, 1, 24
    • 即各个属性(feature)在 one hot 编码下占据的位数;
  • 对象 encfeature_indices_,则记录着属性在新 One hot 编码下的索引位置,
    • feature_indices_ 是对 n_values_ 的累积值,不过 feature_indices 的首位是 0;

进一步通过 fit 好的 one hot encoder 对新来的特征向量进行编码:

>>> enc.transform([[0, 1, 1]]).toarray()array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])
  • 1
  • 2
  • 前 2 位 1, 0,对 0 进行编码
  • 中间 3 位 0, 1, 0 对 1 进行编码;
  • 末尾 4 位 0, 1, 0, 0 对 1 进行编码;
           

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow