欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Ubuntu 20.04 LTS安装opencl

程序员文章站 2022-07-12 21:31:38
...

CPU: AMD® Ryzen threadripper 3970x 32-core processor × 64 

内存: 220.1 GiB

图形: AMD® Radeon rx 580 2048sp

DiskCapacity: 3.8 TB

OS Name: Ubuntu 20.04 LTS

 

系统信息:

[email protected]:/opt/work$ lsb_release -a
No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 20.04 LTS
Release:	20.04
Codename:	focal
[email protected]:/opt/work$ cat /proc/version
Linux version 5.4.0-37-generic ([email protected]) (gcc version 9.3.0 (Ubuntu 9.3.0-10ubuntu2)) #41-Ubuntu SMP Wed Jun 3 18:57:02 UTC 2020

本人所用显卡驱动的下载链接:

https://drivers.amd.com/drivers/linux/amdgpu-pro-20.20-1089974-ubuntu-20.04.tar.xz

请您根据您实际的情况下载对应的驱动

然后安装驱动:

$ mkdir amd-gpu
$ cd amd-gpu/
$ tar xvf /download/amdgpu-pro-20.20-1089974-ubuntu-20.04.tar.xz
$ cd amdgpu-pro-20.20-1089974-ubuntu-20.04/
$ sudo ./amdgpu-install

安装完成后需要重启电脑(祝您好运~)

然后安装clinfo工具查看显卡对OpenCL的支持情况:

$ sudo apt-get install clinfo
$ cliinfo
[email protected]:/opt/work$ clinfo 
Number of platforms                               1
  Platform Name                                   AMD Accelerated Parallel Processing
  Platform Vendor                                 Advanced Micro Devices, Inc.
  Platform Version                                OpenCL 2.1 AMD-APP (3110.6)
  Platform Profile                                FULL_PROFILE
  Platform Extensions                             cl_khr_icd cl_amd_event_callback cl_amd_offline_devices 
  Platform Host timer resolution                  1ns
  Platform Extensions function suffix             AMD

  Platform Name                                   AMD Accelerated Parallel Processing
Number of devices                                 1
  Device Name                                     Ellesmere
  Device Vendor                                   Advanced Micro Devices, Inc.
  Device Vendor ID                                0x1002
  Device Version                                  OpenCL 1.2 AMD-APP (3110.6)
  Driver Version                                  3110.6
  Device OpenCL C Version                         OpenCL C 1.2 
... ...

安装OpenCL的头文件和库:

[email protected]:/opt/work$ sudo apt-get install opencl-headers
Reading package lists... Done
Building dependency tree       
Reading state information... Done
The following packages were automatically installed and are no longer required:
  guile-2.0-libs libgsoap-2.8.91 libm17n-0 libotf0 libqt5opengl5 libvncserver1 m17n-db virtualbox-dkms
... ...
Setting up opencl-clhpp-headers (2.1.0~~git51-gc5063c3-1) ...
Setting up opencl-c-headers (2.2~2019.08.06-g0d5f18c-1) ...
Setting up opencl-headers (2.2~2019.08.06-g0d5f18c-1) ...

[email protected]:/opt/work$ sudo apt install opencl-dev
[sudo] password for liyang: 
Reading package lists... Done
Building dependency tree       
Reading state information... Done
Note, selecting 'ocl-icd-opencl-dev' instead of 'opencl-dev'
The following packages were automatically installed and are no longer required:
  guile-2.0-libs libgsoap-2.8.91 libm17n-0 libotf0 libqt5opengl5 libvncserver1 m17n-db virtualbox-dkms
... ...
Unpacking ocl-icd-opencl-dev:amd64 (2.2.11-1ubuntu1) ...
Setting up ocl-icd-opencl-dev:amd64 (2.2.11-1ubuntu1) ...

假设:

源码路径:/opt/work/cl/

主机源码文件名: cl.c, 同级别目录编写CMakeLists.txt文件:

cmake_minimum_required( VERSION 2.8.10 )

project( Example )

find_package( OpenCL REQUIRED )

include_directories( ${OPENCL_INCLUDE_DIR} )

add_executable( example cl.c )

target_link_libraries( example ${OPENCL_LIBRARIES} )

执行cmake命令生成Makefile(/opt/work/cl/下):

$ mkdir build
$ cd build
$ cmake -DOPENCL_INCLUDE_DIR=/usr/include -DOPENCL_LIBRARIES=/lib/x86_64-linux-gnu/libOpenCL.so ..

然后编写cl.c源程序:

#define PROGRAM_FILE "matvec.cl"
#define KERNEL_FUNC "matvec_mult"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

#ifdef MAC
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif

void show_float4(float data[4]) {
    int i = 0;

    for(i = 0; i < 4; i++) {
        if(i != 3) {
            printf("%f, ", data[i]);
        } else {
            printf("%f", data[i]);
        }
    }
    printf("\n\n");
}

int main() {
    cl_platform_id platform;
    cl_device_id device;
    cl_context context;
    cl_command_queue queue;
    cl_int i, err;

    cl_program program;
    FILE *program_handle;
    char *program_buffer, *program_log;
    size_t program_size, log_size;
    cl_kernel kernel;
    size_t work_units_per_kernel;

    float mat[16], vec[4], result[4];
    float correct[4] = {0.0f, 0.0f, 0.0f, 0.0f};
    cl_mem mat_buff, vec_buff, res_buff;

    for(i = 0; i < 16; i++) {
        mat[i] = i * 2.0f;
    }

    for(i = 0; i < 4; i++) {
        vec[i] = i * 3.0f;
        correct[0] += mat[i]        * vec[i];
        correct[1] += mat[i + 4]    * vec[i];
        correct[2] += mat[i + 8]    * vec[i];
        correct[3] += mat[i + 12]   * vec[i];
    }
    clGetPlatformIDs(1, &platform, NULL);
    clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
    context = clCreateContext(NULL, 1, &device, NULL, NULL, &err);
    program_handle = fopen(PROGRAM_FILE, "r");
    fseek(program_handle, 0, SEEK_END);
    program_size = ftell(program_handle);
    rewind(program_handle);
    program_buffer = (char *)malloc(program_size + 1);
    program_buffer[program_size] = '\0';
    fread(program_buffer, sizeof(char), program_size, program_handle);
    fclose(program_handle);

    program = clCreateProgramWithSource(context, 1, (const char **)&program_buffer, &program_size, &err);
    free(program_buffer);

    clGetProgramInfo(program, CL_PROGRAM_SOURCE, 0, NULL, &program_size);
    program_buffer = (char *)malloc(program_size);
    clGetProgramInfo(program, CL_PROGRAM_SOURCE, program_size, program_buffer, 0);
    printf("Program Source: \n%s\n\n", program_buffer);
    free(program_buffer);

    err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    if(err < 0) {
        printf("CL_PROGRAM_BUILD_STATUS: %d\n", err);
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
        printf("log_size: %ld\n", log_size);
        program_log = (char *) malloc (log_size + 1);
        program_log[log_size] = '\0';
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, log_size, program_log, NULL);
        printf("Program log: %s\n", program_log);
        free(program_log);
        exit(1);
    }

    kernel = clCreateKernel(program, KERNEL_FUNC, &err);
    if(0 > err) {
        printf("clCreateKernel status: %d\n", (int32_t)err);
        exit(1);
    }
    queue = clCreateCommandQueue(context, device, 0, &err);
    if(0 > err) {
        printf("clCreateCommandQueue status: %d\n", (int32_t)err);
        exit(1);
    }
    mat_buff = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * 16, mat, &err);
    vec_buff = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * 4, vec, &err);
    res_buff = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * 4, NULL, &err);

    clSetKernelArg(kernel, 0, sizeof(cl_mem), &mat_buff);
    clSetKernelArg(kernel, 1, sizeof(cl_mem), &vec_buff);
    clSetKernelArg(kernel, 2, sizeof(cl_mem), &res_buff);

    work_units_per_kernel = 4;
    clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &work_units_per_kernel, NULL, 0, NULL, NULL);
    clEnqueueReadBuffer(queue, res_buff, CL_TRUE, 0, sizeof(float) * 4, result, 0, NULL, NULL);
    printf("Result: \n");
    show_float4(result);
    printf("Correct: \n");
    show_float4(correct);

    if((result[0] == correct[0]) && (result[1] == correct[1])
            && (result[2] == correct[2]) && (result[3] == correct[3])) {
        printf("Matrix-vector multiplication successful.\n");
    }
    else {
        printf("Matrix-vector multiplication unsuccessful.\n");
    }

    clReleaseMemObject(mat_buff);
    clReleaseMemObject(vec_buff);
    clReleaseMemObject(res_buff);
    clReleaseKernel(kernel);
    clReleaseCommandQueue(queue);
    clReleaseProgram(program);
    clReleaseContext(context);

    return 0;
}

然后编译:

[email protected]:/opt/work/cl$ cd build/; make; cd ..
[ 50%] Building C object CMakeFiles/example.dir/cl.c.o
In file included from /usr/include/CL/cl.h:32,
                 from /opt/work/cl/cl.c:12:
/usr/include/CL/cl_version.h:34:9: note: #pragma message: cl_version.h: CL_TARGET_OPENCL_VERSION is not defined. Defaulting to 220 (OpenCL 2.2)
   34 | #pragma message("cl_version.h: CL_TARGET_OPENCL_VERSION is not defined. Defaulting to 220 (OpenCL 2.2)")
      |         ^~~~~~~
/opt/work/cl/cl.c: In function 'main':
/opt/work/cl/cl.c:100:5: warning: 'clCreateCommandQueue' is deprecated [-Wdeprecated-declarations]
  100 |     queue = clCreateCommandQueue(context, device, 0, &err);
      |     ^~~~~
In file included from /opt/work/cl/cl.c:12:
/usr/include/CL/cl.h:1781:1: note: declared here
 1781 | clCreateCommandQueue(cl_context                     context,
      | ^~~~~~~~~~~~~~~~~~~~
[100%] Linking C executable example
[100%] Built target example

执行:

[email protected]:/opt/work/cl$ ./build/example 
Program Source: 
__kernel void matvec_mult(  __global float4* matrix, 
                            __global float4* vector, 
                            __global float* result) {
    int i = get_global_id(0);
    result[i] = dot(matrix[i], vector[0]);
}

Result: 
84.000000, 228.000000, 372.000000, 516.000000

Correct: 
84.000000, 228.000000, 372.000000, 516.000000

Matrix-vector multiplication successful.

 

相关标签: opencl