计算两个矩阵之间的欧式距离
程序员文章站
2022-07-12 19:55:19
...
在我们使用k-NN模型时,需要计算测试集中每一点到训练集中每一点的欧氏距离,即需要求得两矩阵之间的欧氏距离。在实现k-NN算法时通常有三种方案,分别是使用两层循环,使用一层循环和不使用循环。
使用两层循环
分别对训练集和测试集中的数据进行循环遍历,计算每两个点之间的欧式距离,然后赋值给dist矩阵。此算法没有经过任何优化。
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension. #
#####################################################################
# pass
dists[i][j] = np.sqrt(np.sum(np.square(X[i] - self.X_train[j])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists
使用一层循环
使用矩阵表示训练集的数据,计算测试集中每一点到训练集矩阵的距离,可以对算法优化为只使用一层循环。
def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
# pass
dists[i] = np.sqrt(np.sum(np.square(self.X_train - X[i]), axis = 1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists
不使用循环
运算效率最高的算法是将训练集和测试集都使用矩阵表示,然后使用矩阵运算的方法替代之前的循环操作。但此操作需要我们对矩阵的运算规则非常熟悉。接下来着重记录如何计算两个矩阵之间的欧式距离。
记录测试集矩阵P的大小为M*D,训练集矩阵C的大小为N*D(测试集*有M个点,每个点为D维特征向量。训练集*有N个点,每个点为D维特征向量)
记是P的第i行,记是C的第j行
首先计算和之间的距离dist(i,j)
我们可以推广到距离矩阵的第i行的计算公式
继续将公式推广为整个距离矩阵
表示为python代码:
def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# #
# You should implement this function using only basic array operations; #
# in particular you should not use functions from scipy. #
# #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
# pass
dists = np.sqrt(-2*np.dot(X, self.X_train.T) + np.sum(np.square(self.X_train), axis = 1) + np.transpose([np.sum(np.square(X), axis = 1)]))
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists
上一篇: webpack4.0项目配置
下一篇: 二、webpack4.0配置篇