计算特征向量间欧式距离的快捷方法
程序员文章站
2022-07-12 19:52:18
...
最近因为课题需要,使用欧式距离来计算多个特征向量间的距离。开始的想法是使用循环来解决,发现计算复杂度高,时间长
在博客中看到作者GoHowz 和其引用frankzd博客,通过矩阵的方法来代替之前循环计算方法,速度提升很多!!!
作者原文:https://blog.csdn.net/IT_forlearn/article/details/100022244
为了方便后面查询,粘贴了GoHowz 博客中的计算方法如下:
def euclidean_dist(x, y):
"""
Args:
x: pytorch Variable, with shape [m, d]
y: pytorch Variable, with shape [n, d]
Returns:
dist: pytorch Variable, with shape [m, n]
"""
m, n = x.size(0), y.size(0)
# xx经过pow()方法对每单个数据进行二次方操作后,在axis=1 方向(横向,就是第一列向最后一列的方向)加和,此时xx的shape为(m, 1),经过expand()方法,扩展n-1次,此时xx的shape为(m, n)
xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n)
# yy会在最后进行转置的操作
yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t()
dist = xx + yy
# torch.addmm(beta=1, input, alpha=1, mat1, mat2, out=None),这行表示的意思是dist - 2 * x * yT
dist.addmm_(1, -2, x, y.t())
# clamp()函数可以限定dist内元素的最大最小范围,dist最后开方,得到样本之间的距离矩阵
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
return dist