线程间协作的两种方式:wait、notify、notifyAll和Condition
在前面我们将了很多关于同步的问题,然而在现实中,需要线程之间的协作。比如说最经典的生产者-消费者模型:当队列满时,生产者需要等待队列有空间才能继续往里面放入商品,而在等待的期间内,生产者必须释放对临界资源(即队列)的占用权。因为生产者如果不释放对临界资源的占用权,那么消费者就无法消费队列中的商品,就不会让队列有空间,那么生产者就会一直无限等待下去。因此,一般情况下,当队列满时,会让生产者交出对临界资源的占用权,并进入挂起状态。然后等待消费者消费了商品,然后消费者通知生产者队列有空间了。同样地,当队列空时,消费者也必须等待,等待生产者通知它队列中有商品了。这种互相通信的过程就是线程间的协作。
今天我们就来探讨一下Java中线程协作的最常见的两种方式:利用Object.wait()、Object.notify()和使用Condition
以下是本文目录大纲:
一.wait()、notify()和notifyAll()
二.Condition
三.生产者-消费者模型的实现
若有不正之处请多多谅解,并欢迎批评指正。
请尊重作者劳动成果,转载请标明原文链接:
http://www.cnblogs.com/dolphin0520/p/3920385.html
一.wait()、notify()和notifyAll()
wait()、notify()和notifyAll()是Object类中的方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
/** * Wakes up a single thread that is waiting on this object's
* monitor. If any threads are waiting on this object, one of them
* is chosen to be awakened. The choice is arbitrary and occurs at
* the discretion of the implementation. A thread waits on an object's
* monitor by calling one of the wait methods
*/
public final native void notify();
/** * Wakes up all threads that are waiting on this object's monitor. A
* thread waits on an object's monitor by calling one of the
* wait methods.
*/
public final native void notifyAll();
/** * Causes the current thread to wait until either another thread invokes the
* {@link java.lang.Object#notify()} method or the
* {@link java.lang.Object#notifyAll()} method for this object, or a
* specified amount of time has elapsed.
* <p>
* The current thread must own this object's monitor.
*/
public final native void wait( long timeout) throws InterruptedException;
|
从这三个方法的文字描述可以知道以下几点信息:
1)wait()、notify()和notifyAll()方法是本地方法,并且为final方法,无法被重写。
2)调用某个对象的wait()方法能让当前线程阻塞,并且当前线程必须拥有此对象的monitor(即锁)
3)调用某个对象的notify()方法能够唤醒一个正在等待这个对象的monitor的线程,如果有多个线程都在等待这个对象的monitor,则只能唤醒其中一个线程;
4)调用notifyAll()方法能够唤醒所有正在等待这个对象的monitor的线程;
有朋友可能会有疑问:为何这三个不是Thread类声明中的方法,而是Object类中声明的方法(当然由于Thread类继承了Object类,所以Thread也可以调用者三个方法)?其实这个问题很简单,由于每个对象都拥有monitor(即锁),所以让当前线程等待某个对象的锁,当然应该通过这个对象来操作了。而不是用当前线程来操作,因为当前线程可能会等待多个线程的锁,如果通过线程来操作,就非常复杂了。
上面已经提到,如果调用某个对象的wait()方法,当前线程必须拥有这个对象的monitor(即锁),因此调用wait()方法必须在同步块或者同步方法中进行(synchronized块或者synchronized方法)。
调用某个对象的wait()方法,相当于让当前线程交出此对象的monitor,然后进入等待状态,等待后续再次获得此对象的锁(Thread类中的sleep方法使当前线程暂停执行一段时间,从而让其他线程有机会继续执行,但它并不释放对象锁);
notify()方法能够唤醒一个正在等待该对象的monitor的线程,当有多个线程都在等待该对象的monitor的话,则只能唤醒其中一个线程,具体唤醒哪个线程则不得而知。
同样地,调用某个对象的notify()方法,当前线程也必须拥有这个对象的monitor,因此调用notify()方法必须在同步块或者同步方法中进行(synchronized块或者synchronized方法)。
nofityAll()方法能够唤醒所有正在等待该对象的monitor的线程,这一点与notify()方法是不同的。
这里要注意一点:notify()和notifyAll()方法只是唤醒等待该对象的monitor的线程,并不决定哪个线程能够获取到monitor。
举个简单的例子:假如有三个线程Thread1、Thread2和Thread3都在等待对象objectA的monitor,此时Thread4拥有对象objectA的monitor,当在Thread4中调用objectA.notify()方法之后,Thread1、Thread2和Thread3只有一个能被唤醒。注意,被唤醒不等于立刻就获取了objectA的monitor。假若在Thread4中调用objectA.notifyAll()方法,则Thread1、Thread2和Thread3三个线程都会被唤醒,至于哪个线程接下来能够获取到objectA的monitor就具体依赖于操作系统的调度了。
上面尤其要注意一点,一个线程被唤醒不代表立即获取了对象的monitor,只有等调用完notify()或者notifyAll()并退出synchronized块,释放对象锁后,其余线程才可获得锁执行。
下面看一个例子就明白了:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
public class Test {
public static Object object = new Object();
public static void main(String[] args) {
Thread1 thread1 = new Thread1();
Thread2 thread2 = new Thread2();
thread1.start();
try {
Thread.sleep( 200 );
} catch (InterruptedException e) {
e.printStackTrace();
}
thread2.start();
}
static class Thread1 extends Thread{
@Override
public void run() {
synchronized (object) {
try {
object.wait();
} catch (InterruptedException e) {
}
System.out.println( "线程" +Thread.currentThread().getName()+ "获取到了锁" );
}
}
}
static class Thread2 extends Thread{
@Override
public void run() {
synchronized (object) {
object.notify();
System.out.println( "线程" +Thread.currentThread().getName()+ "调用了object.notify()" );
}
System.out.println( "线程" +Thread.currentThread().getName()+ "释放了锁" );
}
}
} |
无论运行多少次,运行结果必定是:
二.Condition
Condition是在java 1.5中才出现的,它用来替代传统的Object的wait()、notify()实现线程间的协作,相比使用Object的wait()、notify(),使用Condition1的await()、signal()这种方式实现线程间协作更加安全和高效。因此通常来说比较推荐使用Condition,在阻塞队列那一篇博文中就讲述到了,阻塞队列实际上是使用了Condition来模拟线程间协作。
- Condition是个接口,基本的方法就是await()和signal()方法;
- Condition依赖于Lock接口,生成一个Condition的基本代码是lock.newCondition()
- 调用Condition的await()和signal()方法,都必须在lock保护之内,就是说必须在lock.lock()和lock.unlock之间才可以使用
Conditon中的await()对应Object的wait();
Condition中的signal()对应Object的notify();
Condition中的signalAll()对应Object的notifyAll()。
三.生产者-消费者模型的实现
1.使用Object的wait()和notify()实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
public class Test {
private int queueSize = 10 ;
private PriorityQueue<Integer> queue = new PriorityQueue<Integer>(queueSize);
public static void main(String[] args) {
Test test = new Test();
Producer producer = test. new Producer();
Consumer consumer = test. new Consumer();
producer.start();
consumer.start();
}
class Consumer extends Thread{
@Override
public void run() {
consume();
}
private void consume() {
while ( true ){
synchronized (queue) {
while (queue.size() == 0 ){
try {
System.out.println( "队列空,等待数据" );
queue.wait();
} catch (InterruptedException e) {
e.printStackTrace();
queue.notify();
}
}
queue.poll(); //每次移走队首元素
queue.notify();
System.out.println( "从队列取走一个元素,队列剩余" +queue.size()+ "个元素" );
}
}
}
}
class Producer extends Thread{
@Override
public void run() {
produce();
}
private void produce() {
while ( true ){
synchronized (queue) {
while (queue.size() == queueSize){
try {
System.out.println( "队列满,等待有空余空间" );
queue.wait();
} catch (InterruptedException e) {
e.printStackTrace();
queue.notify();
}
}
queue.offer( 1 ); //每次插入一个元素
queue.notify();
System.out.println( "向队列取中插入一个元素,队列剩余空间:" +(queueSize-queue.size()));
}
}
}
}
} |
2.使用Condition实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
public class Test {
private int queueSize = 10 ;
private PriorityQueue<Integer> queue = new PriorityQueue<Integer>(queueSize);
private Lock lock = new ReentrantLock();
private Condition notFull = lock.newCondition();
private Condition notEmpty = lock.newCondition();
public static void main(String[] args) {
Test test = new Test();
Producer producer = test. new Producer();
Consumer consumer = test. new Consumer();
producer.start();
consumer.start();
}
class Consumer extends Thread{
@Override
public void run() {
consume();
}
private void consume() {
while ( true ){
lock.lock();
try {
while (queue.size() == 0 ){
try {
System.out.println( "队列空,等待数据" );
notEmpty.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
queue.poll(); //每次移走队首元素
notFull.signal();
System.out.println( "从队列取走一个元素,队列剩余" +queue.size()+ "个元素" );
} finally {
lock.unlock();
}
}
}
}
class Producer extends Thread{
@Override
public void run() {
produce();
}
private void produce() {
while ( true ){
lock.lock();
try {
while (queue.size() == queueSize){
try {
System.out.println( "队列满,等待有空余空间" );
notFull.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
queue.offer( 1 ); //每次插入一个元素
notEmpty.signal();
System.out.println( "向队列取中插入一个元素,队列剩余空间:" +(queueSize-queue.size()));
} finally {
lock.unlock();
}
}
}
}
} |
参考资料:
《Java编程思想》
package com.ixhong.base.thread.base; public class ProducerConsumer { public static void main(String[] args) { SyncStack ss = new SyncStack(); new Thread(new Producer(ss, "p1")).start(); new Thread(new Consumer(ss, "c1")).start(); new Thread(new Producer(ss, "p2")).start(); new Thread(new Consumer(ss, "c2")).start(); } } class WoTou { private int id; public WoTou(int id) { this.id = id; } public int getId() { return id; } public String toString() { return "WT" + getId(); } } class SyncStack { private int index = 0; private WoTou[] arrWT = new WoTou[6]; public synchronized void push(WoTou wt) { while (index == arrWT.length) { try { this.wait(); } catch (InterruptedException e) {} } this.notifyAll(); arrWT[index++] = wt; } public synchronized WoTou pop() { while (index == 0) { try { this.wait(); } catch (InterruptedException e) {} } this.notifyAll(); return arrWT[--index]; } } class Producer implements Runnable { private SyncStack ss = null; private String name; public Producer(SyncStack ss, String name) { this.ss = ss; this.name = name; } public String getName() { return name; } public void run() { for (int i = 0; i < 60; i++) { WoTou wt = new WoTou(i); ss.push(wt); System.out.println(getName() + "生产" + wt); try { Thread.sleep((long) (Math.random() * 100)); } catch (InterruptedException e) {} } } } class Consumer implements Runnable { private SyncStack ss = null; private String name; public Consumer(SyncStack ss, String name) { this.ss = ss; this.name = name; } public String getName() { return name; } public void run() { for (int i = 0; i < 60; i++) { WoTou wt = ss.pop(); System.out.println(getName() + "消费" + wt); try { Thread.sleep((long) (Math.random() * 400)); } catch (InterruptedException e) {} } } }