Pandas获取符合条件的行、获得对应索引,及模拟Excel中的VLOOKUP功能
程序员文章站
2022-07-12 13:54:16
...
(作者:陈玓玏)
使用的原始数据集如下:
import pandas as pd
arr = pd.read_excel('C:/Users/cdl/Desktop/空值test_1.xlsx',encoding='gbk')
print(arr)
print(arr.dtypes)
结果:
numTest timeTest strTest
0 1.0 2017-08-10 one
1 2.0 2018-08-10 two
2 NaN 2019-08-10 NaN
3 3.0 NaT three
4 NaN NaT four
5 4.0 2020-08-10 NaN
numTest float64
timeTest datetime64[ns]
strTest object
dtype: object
获取符合条件的行:
以下的代码是获取DataFrame中numTest列的值大于2的行内容
arr1 = arr[arr['numTest']>2]
print(arr1)
结果:
numTest timeTest strTest
3 3.0 NaT three
5 4.0 2020-08-10 NaN
如果想要获取哪几行符合条件,也就是获取符合条件的行的索引值,操作如下:
result = arr[arr['numTest']>2].index.tolist()
print(result)
结果:
[3, 5]
如果想要获取符合条件的行的其他列,也就是相当于Excel中VLOOKUP的功能,可以考虑把要取的行设为索引,如下:
#将timeTest列设为索引
arr = arr.set_index("timeTest")
print(arr)
#获取对应行索引
result = arr[arr['numTest']>2].index.tolist()
print(arr1)
print(result)
结果:
numTest strTest
timeTest
2017-08-10 1.0 one
2018-08-10 2.0 two
2019-08-10 NaN NaN
NaT 3.0 three
NaT NaN four
2020-08-10 4.0 NaN
numTest timeTest strTest
3 3.0 NaT three
5 4.0 2020-08-10 NaN
[NaT, Timestamp('2020-08-10 00:00:00')]
也可以不改变索引,直接获取过滤后的DataFrame中的特定列:
arr1 = arr[arr['numTest']>2]['timeTest']
print(arr1)
结果:
3 NaT
5 2020-08-10
Name: timeTest, dtype: datetime64[ns]