欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

记录KMP算法,记录其经典之处。。。 算法J#数据结构 

程序员文章站 2022-07-12 11:11:14
...
离开学校已经多年了,早已经不再抚弄那些陈旧的书籍。
周末,深圳的天气阴沉,老天这段时间总是很乐意显摆,动不动就给深圳人民来次几十年一遇的暴雨,似乎要把一年的雨水全部在这些天下完似的。
所以呆在家里面看电视,上网,实在也无聊。随手翻开大学时候的(数据结构,还留着啊,当初刚出来的时候总没有底气,总希望能够随时充电用)。看到了字符串的模式匹配一章。突然发现KMP算法是如此的经典。故记之。。。
在提KMP的经典之前,首先要提基本的模式匹配算法:
所谓模式匹配,简单点说就是对两字符串进行匹配,找出一个字符串在另一个字符串中的位置。
基本的模式匹配是这样的:
假设有字符串
S=S1S2......SN(由于为了算法效率的需要,所以一般都把S[0]保存S的长度)
P=P1P2......PM(同上)
其中(M<N),要求返回P在S中出现的位置。
所以算法要点如下:
假设从S中i点开始扫描(也就是从S[i]开始,此时用一个变量k=i),顺序比较S[i]和P[1],S[i+1]和P[2]。这样,当P进行到第j个字符也就是P[j]的时候,发现S[i+j-1]和P[j]不匹配,那么需要把S的指针i回朔到S起始的下一个字符也就是k+1继续比较。

如图:

记录KMP算法,记录其经典之处。。。
            
    
    
        算法J#数据结构 

以上就是模式匹配的基本算法,这种算法对于大多数的匹配来说基本是O(N+M)的时间复杂度。
但是对于如下的字符串:
S=0000000000000000000000000000001
P=000001
这种字符串来说,每次匹配失败都是在P到最后一个字符也就是j=M的时候,此时S的指针又必须回朔,导致大量的匹配。此时的时间复杂度是O(N*M)。
所以基本算法的时间复杂度是O(N*M)。当然了,对于大多数的匹配是不会有这么高的时间复杂度的,所以这种算法现在也在广泛使用,因为简单。
为了解决上述的问题,KMP算法被发现。
KMP算法的思想如下。匹配过程中,出现不匹配时,S的指针不进行回朔(原地不动),将P尽可能地向后移动一定的距离,再进行匹配。

如图:

记录KMP算法,记录其经典之处。。。
            
    
    
        算法J#数据结构 

从上图中我们看到,当S移动到i,P到j的时候失配。这时候i不回朔,而只是将P向前移动尽可能的距离,继续比较。
假设,P向右移动一定距离后,第k个字符P[k]和S[i]进行比较。
此时如上图,当P[j]和S[i]失配后,i不动,将P前移到K,让P[k]和S[i]继续匹配。现在的关键是K的值是多少?
通过上图,我们发现,因为黄色部分表示已经匹配了的结果(因为是到了S[i]和P[j]的时候才失配,所以Si-j+1Si-j+2…Si-1 = P1P2…Pj-1,见黄色的部分)。所以有:
1、Si-k+1Si-k+2…Si-1 = Pj-k+1Pj-k+2…Pj-1
所以当P前移到K时,有:
2、Si-k+1Si-k+2…Si-1 = P1P2…Pk-1
通过1,2有
Pj-k+1Pj-k+2…Pj-1 = P1P2…Pk-1
呵呵,此时我们的任务就是求这个k值了。。。
理解了这一点之后,终于能够发现此算法的经典了。