欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PyOdps DataFrame来临,数据分析从未如此简单!

程序员文章站 2022-07-12 10:01:32
...

PyOdps正式发布DataFrame框架(此处应掌声经久不息),DTer的福音!有了它,就像卷福有了花生,比翼双飞,哦不,如虎添翼。

快过年了,大家一定没心情看长篇大论的分析文章。作为介绍PyOdps DataFrame的开篇文章,我只说说其用起来爽的地方。其余的部分,从使用、问题到实现原理,我会分文章细说。

如果不知道是DataFrame什么,它是存在于pandas和R里的数据结构,你可以把它当做是表结构。如果想快速浏览PyOdps DataFrame能做什么,可以看我们的快速开始文档

让我们开始吧。

强类型支持

DataFrame API在计算的过程中,从字段到类型都是确定的,因此,若取一个不存在的字段,会丢给你个大大的异常。

In [4]: from odps.df import DataFrame

In [5]: iris = DataFrame(o.get_table('pyodps_iris'))

In [6]: iris.dtypes
Out[6]: 
odps.Schema {
  sepallength           float64       
  sepalwidth            float64       
  petallength           float64       
  petalwidth            float64       
  name                  string        
}

In [7]: iris.field_not_exist
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-7-fc8de079a0de> in <module>()
----> 1 iris.field_not_exist

/Users/chine/Workspace/pyodps/odps/df/expr/expressions.pyc in __getattr__(self, attr)
    510                 return self[attr]
    511 
--> 512             raise e
    513 
    514     def output_type(self):

AttributeError: 'DataFrame' object has no attribute 'field_not_exist'

如果取存在的字段,自然是没问题啦。

In [11]: iris.sepalwidth.head(5)
|==========================================|   1 /  1  (100.00%)         0s
Out[11]: 
   sepalwidth
0         3.5
1         3.0
2         3.2
3         3.1
4         3.6

有些方法,比如说取平均数,非数字肯定是不能调用的咯。

In [12]: iris['name'].mean()
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-12-3f90cae4a19f> in <module>()
----> 1 iris['name'].mean()

/Users/chine/Workspace/pyodps/odps/df/expr/expressions.pyc in __getattribute__(self, attr)
    171                 if new_attr in self._get_attr('_args'):
    172                     return self._get_arg(new_attr)
--> 173             raise e
    174 
    175     def _defunc(self, field):

AttributeError: 'Column' object has no attribute 'mean'

数字类型的字段则可以调用。

In [10]: iris.sepalwidth.mean()
|==========================================|   1 /  1  (100.00%)        27s
3.0540000000000007

操作数据如此简单

我们常常需要select一个表字段,但是只是不需要一个字段,却需要写一堆SQL。在DataFrame API里,调用exclude方法就行了。

In [13]: iris.exclude('name').head(5)
|==========================================|   1 /  1  (100.00%)         0s
Out[13]: 
   sepallength  sepalwidth  petallength  petalwidth
0          5.1         3.5          1.4         0.2
1          4.9         3.0          1.4         0.2
2          4.7         3.2          1.3         0.2
3          4.6         3.1          1.5         0.2
4          5.0         3.6          1.4         0.2

使用DataFrame写出来的代码,天然有Python的特点,清晰易懂。某些快捷API,能使得操作更加简单。

比如我们要取name的个数从大到小前10的值分别是多少。

In [16]: iris.groupby('name').agg(count=iris.name.count()).sort('count', ascending=False)[:10]
|==========================================|   1 /  1  (100.00%)        37s
Out[16]: 
              name  count
0   Iris-virginica     50
1  Iris-versicolor     50
2      Iris-setosa     50

直接使用value_counts来得更快。

In [17]: iris['name'].value_counts()[:10]
|==========================================|   1 /  1  (100.00%)        34s
Out[17]: 
              name  count
0   Iris-virginica     50
1  Iris-versicolor     50
2      Iris-setosa     50

很多时候,写一个SQL,我们需要检查中间结果的执行,就显得很麻烦,我们常常需要选取中间的SQL来执行,在DataFrame的世界,中间结果赋值一个变量就行了,这都不是事儿。

计算的过程和结果展示

在DataFrame的执行过程中,我们在终端里和IPython notebook里,都会有进度条显示任务的完成情况。结果的输出也会有更好的格式化展现,在IPython notebook里会以HTML表格的形式展现。

PyOdps DataFrame来临,数据分析从未如此简单!

绘图集成

DataFrame的计算结果能直接调用plot方法来制作图表,不过绘图需要安装pandasmatplotlib

In [21]: iris.plot()
|==========================================|   1 /  1  (100.00%)         0s
Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x10feab610>

PyOdps DataFrame来临,数据分析从未如此简单!

导出数据再用excel画图,这事儿……咳咳,未来我们还会提供更好的可视化展现,比如提供交互式的图表。

自定义函数和Lambda表达式

DataFrame支持map方法,想对一个字段调用自定义函数非常方便。

In [30]: GLOBAL_VAR = 3.2

In [31]: def myfunc(x):
    if x < GLOBAL_VAR:
        return 0
    else:
        return 1

In [32]: iris['sepalwidth', iris.sepalwidth.map(myfunc).rename('sepalwidth2')].head(5)
|==========================================|   1 /  1  (100.00%)        18s
Out[32]: 
   sepalwidth  sepalwidth2
0         3.5            1
1         3.0            0
2         3.2            1
3         3.1            0
4         3.6            1

可惜apply和聚合的自定义函数,暂时还不支持,期待吧!

延迟执行

DataFrame API的所有操作并不会立即执行,除非用户显式调用execute方法或者一些立即执行的方法。在交互式界面下,打印或者repr对象的时候,内部也会调用execute方法,方便用户使用。

执行优化

DataFrame框架在执行前会对整个查询进行优化,比如连续的projection合并。当用户查看原始表(或者选取某个分区)时,会使用tunnel来获取结果。

PyOdps DataFrame的下一步发展

好了,说了这么多,聊一聊我们DataFrame接下来要做的事情,首先,我们会实现多计算后端,包括pandas,当数据量比较小的时候,我们可以使用本地计算,而不需要等待ODPS的调度;其次,DataFrame框架和我们的机器学习部分会有更多的集成,从数据分析,到算法,一气呵成,大伙看到文章的时候,相关功能应该已经可用了。

PyOdps非常年轻,才短短几个月的时间。我们的整个项目,在GitHub上,是开源的。我个人非常希望大家能参与到开源的建设中来,能提个建议也是极好的。所以,我会写文章详述我们PyOdps的实现原理,希望大家一起把ODPS建设得更好。

github:https://github.com/aliyun/aliyun-odps-python-sdk
文档:http://pyodps.readthedocs.org/zh_CN/latest/