欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PyODPS DataFrame:统一的数据查询语言

程序员文章站 2022-07-12 10:01:44
...

摘要: 前几天,PyODPS发布了0.7版本,这篇文章给大家介绍下PyODPS新版本带来的重要特性。 之前也有若干篇文章介绍过了,我们PyODPS DataFrame是延迟执行的,在调用立即执行的方法,比如execute、persist等之前,都只是构建了表达式。

点此查看原文:http://click.aliyun.com/m/41051/

前几天,PyODPS发布了0.7版本,这篇文章给大家介绍下PyODPS新版本带来的重要特性。

之前也有若干篇文章介绍过了,我们PyODPS DataFrame是延迟执行的,在调用立即执行的方法,比如execute、persist等之前,都只是构建了表达式。而真正的执行根据具体的输入数据,来决定执行的后端。

比如,我们可以根据输入是pandas DataFrame(本地数据),还是MaxCompute Table(MaxCompute数据)来决定是在本地执行,还是在MaxComput上执行。

In [1]: import pandas as pd

In [2]: pd_df = pd.DataFrame({'a': range(3)})

In [3]: from odps.df import DataFrame

In [4]: df = DataFrame(pd_df)  # 本地数据

In [5]: df.a.sum()
|==========================================|   1 /  1  (100.00%)         0s
3

In [6]: %load_ext odps

In [7]: %enter
Out[7]: <odps.inter.Room at 0x105951990>

In [8]: df = DataFrame(o.get_table('pyodps_iris'))  # MaxCompute数据

In [9]: df.sepal_width.sum()
|==========================================|   1 /  1  (100.00%)        15s
458.10000000000014

数据库执行

来到了0.7版本,我们的后端武器库进一步扩充,现在我们支持Postgresql和MySQL,原则上我们支持所有的主流数据库,但我们只在这两个数据库上做了测试。

我们的数据库执行后端使用 sqlalchemy 实现,想要执行还需要对应数据库的driver。

现在,如果DataFrame输入的数据是sqlalchemy Table,那么我们就可以使用数据库后端来执行。

In [24]: mysql_engine = sqlalchemy.create_engine('mysql://root:aaa@qq.com/movielens') 

In [25]: metadata = sqlalchemy.MetaData(bind=mysql_engine)   # 需要绑定engine

In [26]: table = sqlalchemy.Table('top_users', metadata, extend_existing=True, autoload=True)

In [27]: top_users = DataFrame(table)

In [28]: top_users.age.sum()
|==========================================|   1 /  1  (100.00%)         0s
763

对于postgresql也是一样。 值得注意的是,现在还有部分DataFrame操作,比如自定义函数尚未支持数据库后端 

可以看到,PyODPS DataFrame就是一个统一的数据查询语言,用户不需要改写一行代码,就可以根据输入让数据在MaxCompute、本地和数据库上执行,由于DataFrame框架的灵活性,我们甚至还可以扩展出非SQL执行后端的支持。

JOIN或者UNION数据库和MaxCompute数据

过去 一篇文章 提到过,我们可以join或者union本地和MaxCompute上的数据,这样的典型场景就是,比如我有个本地excel文件,我可以轻松读取成本地DataFrame,然后直接就可以和MaxCompute数据进行操作,省去了一大堆麻烦的过程。

现在,我们也同样可以join 数据库和MaxCompute上的数据,试想,有一堆用户数据是在数据库中进行处理,然后我们无需经过同步数据等繁琐的过程,我们就可以直接join 数据库和MaxCompute上的数据,这是何其方便的事情。

比如:

In [29]: ratings = o.get_table('movielens_ratings').to_df()

In [32]: female_top_users = top_users[top_users.sex == 'F']  # MySQL中的数据

In [33]: ratings.join(female_top_users).rating.mean()
|==========================================|   1 /  1  (100.00%)        14s
2.9451170298627924

总结

我们PyODPS一直处在快速迭代的过程中,我们所有所做的努力,都是为了让大家以更好的体验来进行数据分析和机器学习。尽管我们很努力,但精力毕竟有限,难免会有bug,会有功能不完善。希望大家能给我们提issue,能贡献代码就更好啦。

项目文档:http://pyodps.readthedocs.io
项目地址:https://github.com/aliyun/aliyun-odps-python-sdk
提issue:https://github.com/aliyun/aliyun-odps-python-sdk/issues
钉钉扫码:
PyODPS DataFrame:统一的数据查询语言

转载于:https://my.oschina.net/yunqi/blog/1613511