BZOJ1927: [Sdoi2010]星际竞速(最小费用最大流 最小路径覆盖)
程序员文章站
2022-07-12 08:32:25
题意 "题目链接" Sol 看完题不难想到最小路径覆盖,但是带权的咋做啊?qwqqq 首先冷静思考一下:最小路径覆盖 = $n \text{二分图最大匹配数}$ 为什么呢?首先最坏情况下是用$n$条路径去覆盖(就是$n$个点),根据二分图的性质,每个点只能有一个和他配对,这样就保证了,每多出一个匹配 ......
题意
sol
看完题不难想到最小路径覆盖,但是带权的咋做啊?qwqqq
首先冷静思考一下:最小路径覆盖 = \(n - \text{二分图最大匹配数}\)
为什么呢?首先最坏情况下是用\(n\)条路径去覆盖(就是\(n\)个点),根据二分图的性质,每个点只能有一个和他配对,这样就保证了,每多出一个匹配,路径数就会\(-1\)
扩展到有边权的图也是同理的,\(i\)表示二分图左侧的点,\(i'\)表示二分图右侧的点,对于两点\(u, v\),从\(u\)向\(v'\)连\((1, w_i)\)的边(前面是流量,后面是费用)
接下来从\(s\)向\(i\)连\((1, 0)\)的边,从\(i'\)向\(t\)连\((1, 0)\)的边,从\(s\)向\(i'\)连\((1, a_i)\)的边
跑最小费用最大流即可
#include<bits/stdc++.h> #define chmin(x, y) (x = x < y ? x : y) #define chmax(x, y) (x = x > y ? x : y) using namespace std; const int maxn = 1e6 + 10, inf = 1e9 + 10; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int n, m, s, t, dis[maxn], vis[maxn], pre[maxn], ansflow, anscost, a[maxn]; struct edge { int u, v, f, w, nxt; }e[maxn]; int head[maxn], num = 0; inline void add_edge(int x, int y, int f, int w) { e[num] = (edge) {x, y, f, w, head[x]}; head[x] = num++; } inline void addedge(int x, int y, int f, int w) { add_edge(x, y, f, w); add_edge(y, x, 0, -w); } bool spfa() { queue<int> q; q.push(s); memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[s] = 0; while(!q.empty()) { int p = q.front(); q.pop(); vis[p] = 0; for(int i = head[p]; ~i; i = e[i].nxt) { int to = e[i].v; if(e[i].f && dis[to] > dis[p] + e[i].w) { dis[to] = dis[p] + e[i].w; pre[to] = i; if(!vis[to]) vis[to] = 1, q.push(to); } } } return dis[t] <= inf; } void f() { int canflow = inf; for(int i = t; i != s; i = e[pre[i]].u) chmin(canflow, e[pre[i]].f); for(int i = t; i != s; i = e[pre[i]].u) e[pre[i]].f -= canflow, e[pre[i] ^ 1].f += canflow; anscost += canflow * dis[t]; } void mcmf() { while(spfa()) f(); } int main() { memset(head, -1, sizeof(head)); n = read(); m = read(); s = n * 2 + 2, t = n * 2 + 3; for(int i = 1; i <= n; i++) a[i] =read(), addedge(s, i, 1, 0), addedge(i + n, t, 1, 0), addedge(s, i + n, 1, a[i]); for(int i = 1; i <= m; i++) { int x = read(), y = read(), v = read(); if(x > y) swap(x, y); addedge(x, y + n, 1, v); } mcmf(); printf("%d\n", anscost); return 0; }