mysql事务和多版本并发控制详解
一、mysql事务
事务就是一组原子性的SQL查询,或者说一个独立的工作单元。如果数据库引擎可以成功执行该组全部语句,那么就执行该组语句。如果其中有任何一条语句不能执行,那么所有的语句都不会执行。也就是说,事务内的语句要么全部执行成功,要么全部执行失败。
1、事务的ACID特性
事务需要系统严格的支持ACID特性,ACID表示原子性、一致性、隔离性和持久性。一个运行良好的事务处理系统,必须具备这些标准特征。
- 原子性:一个事务必须被视为一个不可分割的最小工作单元,整个事务中的所有操作要么全部提交成功,要么全部失败回滚,对于一个事务来说,不可能只执行其中一部分操作,这就是事务的原子性。
- 一致性:数据库总是从一个一致性的状态换到另外一个一致性的状态。一致性确保了,即使系统已经执行了事务中的部分操作后系统崩溃,数据也不会有损失,因为事务最终没有提交,所以事务中所做的修改液不会保存到数据库中。
- 隔离性:通常来说,一个事务所做的修改在最终提交以前,对其他事务是不可见的。如果事务的操作正在执行的过程中,又有其他事务需要操作该数据,那么其他事务看到的还是原始数据。
- 持久性:一旦事务提交,则其所做的修改就会永远保存到数据库中。此时即使系统崩溃,修改的数据也不会丢失。
2、隔离级别
隔离性其实比想象的要复杂。在SQL标准中定义了四种隔离级别,每一种级别都规定了一个事务中所做的修改,那些在事务内核事物间是可见的,那些是不可见的。较低级别的隔离通常可以执行更高的并发,系统的开销也更低。
- READ UNCOMMITTED(未提交读):在该级别事务中的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也称为赃读。这个级别会导致很多问题,从性能上来说,该级别不会比其他级别好太多,但缺乏其他级别的很多好处,除非真的有非常必要的理由,在实际应用中一般很少。
- READ COMMITTED(提交读):大多数数据库系统的默认隔离级别都是READ COMMITED(mysql不是)。该级别满足前面提到的隔离性的简单定义:一个事务开始时,只能看见已经提交的书屋所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也就做不可重复读,因为两次执行同样的查询,可能会得到不一样的结果。
- REPEATABLE READ(可重复读):该级别解决了赃读的问题。该级别保证了在同一个事务中多次读取同样记录的结果是一致的。但是理论上,可重复读隔离级别还是无法解决另外一个幻读的问题。所谓幻读-----指的是当某个事务在读取某个范围内的记录时,另外一个事务又在范围内插入了新的记录,当之前的事务再次读取该范围内记录时,会产生幻行。Innodb存储引擎通过多版本并发控制(MVCC)解决了幻读的问题。
- SERIALIZABLE(可串行读):这是最高的隔离级别。他通过强制事务串行执行,避免了前面说的幻读的问题。简单来说,该级别会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。实际应用中也很少用到这个隔离级别,只有在非常需要确保数据的一致性而且可以接受没有并发的情况下,才考虑采用该级别。
3、死锁问题
死锁是指两个或者多个事务在同一资源上相互占用,并请求锁定对方占用的资源,从而导致恶性循环的现象。当多个事务视图以不同的顺序锁定资源时,就可能会产生死锁。多个事务同时锁定同一个资源时,也会产生死锁。
为了解决这种问题,数据库系统实现了各种死锁检测和死锁超时机制。越复杂的系统,越能检测到死锁的循环依赖,并立即返回一个错误。这种解决方式是很有效,否则死锁会导致出现非常慢的查询。还有一种解决方式,就是当查询的时间达到锁等待超时的设定后放弃锁请求,这种方式通常来说不太好。InnoDB目前处理死锁的方法是,将持有最少行级排他的事务进行回滚。
锁的行为和顺序是和存储引擎相关的。以同样的顺序执行语句,有些存储引擎会产生死锁,有些则不会。死锁的产生有双重原因:有些是因为真正的数据冲突,这种情况通常很难避免,但有些则完全是由于存储引擎的实现方式导致的。
死锁发生以后,只有部分或者完全回滚其中一个事务,才能打破死锁。对于事务型的系统,这是无法避免的,所以应用程序在设计时必须考虑如何处理死锁。大多数情况下只需要重新执行因死锁回滚的事务即可。
4、事务日志
事务日志可以帮助提高事务的效率。使用事务日志,存储引擎在修改表的数据时只需要修改其内存拷贝,再把修改修改行为记录到持久在磁盘上的事务日志中,而不是每次都将修改的数据本身持久到磁盘。事务日志采用的是追加的方式,因此写日志的操作是磁盘上一块区域内的顺序I/O,而不像随机I/O需要在磁盘的多个地方移动磁头,所以采用事务日志的方式相对来说要快的多。事务日志持久以后,内存中被修改的数据在后台可以慢慢的刷回到磁盘。目前大多数存储引擎都是这样实现的,我们通常称之为预写式日志,修改数据需要写两次磁盘。
如果数据的修改已经记录到事务日志并持久化,但数据本身还没有写回到磁盘,此时系统崩溃,存储引擎在重启时能够自动恢复这部分修改的数据。
二、多版本并发控制
mysql的大多数事务型存储引擎实现的都不是简单的行级锁。基于提升并发性能的考虑,他们一般都同时实现了多版本并发控制(MVCC)。可以认为MVCC是行级锁的一个变种,但是它在很多情况下避免了加锁操作,因此开销更低。虽然实现机制有所不同,但大都实现了非阻塞的读操作,写操作也只锁定必要的行。
MVCC的实现,是通过保存数据在某个时间点的快照来实现的。也就是说,不管需要执行多长时间,每个事物看到的数据都是一致的。根据事务开始的时间不同,每个事务对同一张表,同一时刻看到的数据可能是不一样的。
不同存储引擎的MVCC实现是不同的,典型的有乐观并发控制和悲观并发控制。InnoDB的MVCC,是通过在每行记录后面保存隐藏的列来实现的。这两个列,一个保存了行的创建时间,一个保存行的过期时间(或删除时间)。当然存储的并不是实际的时间值,而是系统版本号。每开始一个新的事务,系统版本号都会自动递增。事务开始时刻的系统版本号会作为事务的版本号,用来和查询到的每行记录的版本号进行比较。在REPEATABLE READ隔离级别下,MVCC工作如下:
- SELECT----InnoDB会根据以下两个条件检查每行记录:①InnoDB只查找版本早于当前事务版本的数据行(也就是,行的系统版本号小于或等于事务的系统版本号),这样可以确保事务读取的行,要么是在事务开始之前已经存在的,要么是事务自身插入或者修改过的;②行的删除版本要么未定义,要么大于当前事务版本号。这可以确保事务读取到的行,在事务开始之前未被删除。
- INSERT----InnoDB为新插入的每一行保存当前系统版本号作为行版本号。
- DELETE----InnoDB为删除的每一行保存当前系统版本号作为删除标示。
- UPDATE----InnoDB会插入一行新纪录,保存当前系统版本号作为行版本号,同时保存当前系统版本号到原来的行作为行删除标示。
保存这两个额外系统版本号,使大多数读操作都可以不用加锁。这样设计使得读数据操作很简单,性能很好,并且也能保证只会读取到符合标准的行。不足之处是每行记录都需要额外的存储空间,需要做更多的行检查工作,以及一些额外的维护工作。
MVCC只在REPEATABLE READ和READ COMMITTED两个隔离级别下工作。其他两个隔离级别都和MVCC不兼容,因为READ UNCOMMITTED总是读取最新的数据行,而不是符合当前事务版本的数据行。而SERIALIZABLE则会对所有读取的行都加锁。
上一篇: linux php 连接sql server2000(2)
下一篇: 数据库事务隔离级别