使用keras做SQL注入攻击的判断(实例讲解)
本文是通过深度学习框架keras来做sql注入特征识别, 不过虽然用了keras,但是大部分还是普通的神经网络,只是外加了一些规则化、dropout层(随着深度学习出现的层)。
基本思路就是喂入一堆数据(int型)、通过神经网络计算(正向、反向)、softmax多分类概率计算得出各个类的概率,注意:这里只要2个类别:0-正常的文本;1-包含sql注入的文本
文件分割上,做成了4个python文件:
util类,用来将char转换成int(nn要的都是数字类型的,其他任何类型都要转换成int/float这些才能喂入,又称为feed)
data类,用来获取训练数据,验证数据的类,由于这里的训练是有监督训练,因此此时需要返回的是个元组(x, y)
trainer类,keras的网络模型建模在这里,包括损失函数、训练epoch次数等
predict类,获取几个测试数据,看看效果的预测类
先放trainer类代码,网络定义在这里,最重要的一个,和数据格式一样重要(呵呵,数据格式可是非常重要的,在这种程序中)
import sql注入data import numpy as np import keras from keras.models import sequential from keras.layers import dense, dropout, activation from keras.layers.normalization import batchnormalization from keras.optimizers import sgd x, y=sql注入data.loadsqlinjectdata() availablevectorsize=15 x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availablevectorsize) y=keras.utils.to_categorical(y, num_classes=2) model = sequential() model.add(dense(64, activation='relu', input_dim=availablevectorsize)) model.add(batchnormalization()) model.add(dropout(0.3)) model.add(dense(64, activation='relu')) model.add(dropout(0.3)) model.add(dense(2, activation='softmax')) sgd = sgd(lr=0.001, momentum=0.9) model.compile(loss='mse', optimizer=sgd, metrics=['accuracy']) history=model.fit(x, y,epochs=500,batch_size=16) model.save('e:\\sql_checker\\models\\trained_models.h5') print("done, model saved in path-->e:\\sql_checker\\models\\trained_models.h5") import matplotlib.pyplot as plt plt.plot(history.history['loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
先来解释上面这段plt的代码,因为最容易解释,这段代码是用来把每次epoch的训练的损失loss value用折线图表示出来:
何为训练?何为损失loss value?
训练的目的是为了想让网络最终计算出来的分类数据和我们给出的y一致,那不一致怎么算?不一致就是有损失,也就是说训练的目的是要一致,也就是要损失最小化
怎么让损失最小化?梯度下降,这里用的是sgd优化算法:
from keras.optimizers import sgd sgd = sgd(lr=0.001, momentum=0.9) model.compile(loss='mse', optimizer=sgd, metrics=['accuracy'])
上面这段代码的loss='mse'就是定义了用那种损失函数,还有好几种损失函数,大家自己参考啊。
optimizer=sgd就是优化算法用哪个了,不同的optimizer有不同的参数
由于此处用的是全连接nn,因此是需要固定的输入size的,这个函数就是用来固定(不够会补0) 特征向量size的:
x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availablevectorsize)
再来看看最终的分类输出,是one hot的,这个one hot大家自己查查,很容易的定义,就是比较浪费空间,分类间没有关联性,不过用在这里很方便
y=keras.utils.to_categorical(y, num_classes=2)
然后再说说预测部分代码:
import sql注入data import converter import numpy as np import keras from keras.models import load_model print("predict....") x=sql注入data.loadtestsqlinjectdata() x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=15) model=load_model('e:\\sql_checker\\models\\trained_models.h5') result=model.predict_classes(x, batch_size=len(x)) result=converter.convert2label(result) print(result) print("done")
这部分代码很容易理解,并且连y都没有
好了,似乎有那么点意思了吧。
下面把另外几个工具类、数据类代码放出来:
def toints(sentence): base=ord('0') ary=[] for c in sentence: ary.append(ord(c)-base) return ary def convert2label(vector): string_array=[] for v in vector: if v==1: string_array.append('sql注入') else: string_array.append('正常文本') return string_array
import converter import numpy as np def loadsqlinjectdata(): x=[] x.append(converter.toints("100")) x.append(converter.toints("150")) x.append(converter.toints("1")) x.append(converter.toints("3")) x.append(converter.toints("19")) x.append(converter.toints("37")) x.append(converter.toints("1'--")) x.append(converter.toints("1' or 1=1;--")) x.append(converter.toints("updatable")) x.append(converter.toints("update tbl")) x.append(converter.toints("update someb")) x.append(converter.toints("update")) x.append(converter.toints("updat")) x.append(converter.toints("update a")) x.append(converter.toints("'--")) x.append(converter.toints("' or 1=1;--")) x.append(converter.toints("aupdatable")) x.append(converter.toints("hello world")) y=[[0],[0],[0],[0],[0],[0],[1],[1],[0],[1],[1],[0],[0],[1],[1],[1],[0],[0]] x=np.asarray(x) y=np.asarray(y) return x, y def loadtestsqlinjectdata(): x=[] x.append(converter.toints("some value")) x.append(converter.toints("-1")) x.append(converter.toints("' or 1=1;--")) x.append(converter.toints("noupdate")) x.append(converter.toints("update ")) x.append(converter.toints("update")) x.append(converter.toints("update z")) x=np.asarray(x) return x
以上这篇使用keras做sql注入攻击的判断(实例讲解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。