欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

编写高质量Python程序(二)编程惯用法

程序员文章站 2022-07-10 21:59:57
本系列文章为《编写高质量代码——改善Python程序的91个建议》的精炼汇总。 利用assert语句发现问题 assert语句的基本语法如下: 其中, 是判断语句,会返回True或False,当返回False时会引发AssertionError。 中的内容表示是可选的,用来传递具体的异常信息。 利用 ......

本系列文章为《编写高质量代码——改善python程序的91个建议》的精炼汇总。

利用assert语句发现问题

assert语句的基本语法如下:

assert expression1 ["," expression2]

其中,expression1是判断语句,会返回true或false,当返回false时会引发assertionerror。[]中的内容表示是可选的,用来传递具体的异常信息。

>>> a = 1
>>> b = 2
>>> assert a == b, "a equals b"
traceback (most recent call last):
  file "<stdin>", line 1, in <module>
assertionerror: a equals b

利用assert语句来发现程序中的问题。断言(assert)在很多语言中都存在,主要为调试程序服务,能够快速方便检查程序的异常或不恰当的输入。

要注意的是使用assert是有代价的,它会对性能产生一定的影响,可以不用尽量不用。

两个变量进行数据交换

变量进行数据交换值时,不推荐使用中间变量

# 交换x,y
# 使用中间变量
temp = x
x = y
y = temp
# 不使用中间变量
x, y = y, x

第二种方法在内存中执行的顺序如下:

  • 先计算右边的表达式 y, x,在内存中创建元组(y, x),其标示符合值分别为 y、x 及其对应的值,其中 y 和 x 是在初始化时已经存在于内存中的对象。
  • 通过解包操作(unpacking),元组第一标识符(为 y)分配给左边第一个元素(此时为 x),元组第二个标识符(为 x)分配给左边第二个元素(为 y),从而达到实现 x、y 值交换的目的。

充分利用lazy evaluation的特性

lazy evaluation 常被译为“延迟计算”或“惰性计算”,指的是仅仅在真正需要执行的时候才计算表达式的值。

  • 避免不必要的计算,带来性能上的提升。对于 python 中的条件表达式 if x and y,在 x 为 false 的情况下 y 表达式的值将不再计算。而对于 if x or y,当 x 的值为 true 的时候将直接返回,不再计算 y 的值。
  • 节省空间,使得无限循环的数据结构成为可能。python 中最典型的使用延迟计算的例子就是生成器表达式了。比如斐波那契:
def fib():
    a, b = 0, 1
    while true:
        yield a
        a, b = b, a + b
from itertools import islice
print(list(islice(fib(), 5)))

不推荐使用type来进行类型检查

内建函数 type(object) 用于返回当前对象的类型。可以通过与 python 自带模块 types 中所定义的名称进行比较,根据其返回值确定变量类型是否符合要求。

所有基本类型对应的名称都可以在 types 模块中找到,然而使用 type() 函数并不适合用来进行变量类型检查。这是因为:

  • 基于内建类型扩展的用户自定义类型,type 函数并不能准确返回结果
  • 在古典类中,所有类的实例的 type 值都相等

解决方法是,如果类型有对应的工厂函数,可以使用工厂函数对类型做相应转换,否则可以使用 isinstance() 函数来检测

isinstance(object, classinfo)

其中,classinfo 可以为直接或间接类名、基本类型名称或者由它们组成的元组,该函数在 classinfo 参数错误的情况下会抛出 typeerror 异常。

# isinstance 基本用法举例如下:
>>> isinstance(2, float)
false
>>> isinstance("a", (str, unicode))
true
>>> isinstance((2, 3), (str, list, tuple)) # 支持多种类型列表
true

警惕eval()的安全漏洞

python中eval()函数将字符串当成有效的表达式来求值并返回计算结果。其函数声明如下:

eval(expression[, globals[, locals]])

其中,参数 globals 为字典形式,locals 为任何映射对象,它们分别表示全局和局部命名空间。如果传入 globals 参数的字典中缺少 builtins 的时候,当前的全局命名空间将作为 globals 参数输入并且在表达式计算之前被解析。locals 参数默认与 globals 相同,如果两者都省略的话,表达式将在 eval() 调用的环境中执行。

eval 存在安全漏洞,一个简单的例子:

import sys
from math import *
def expcalcbot(string):
    try:
        print "your answer is", eval(user_func) # 计算输入的值
    except nameerror:
        print "the expression you enter is not valid"
print 'hi, i am expcalcbot. please input your expression or enter e to end'
inputstr = ''
while true:
    print 'please enter a number or operation. enter c to complete. :'
    inputstr = raw_input()
    if inputstr == str('e'): # 遇到输入为 e 的时候退出
        sys.exit()
    elif repr(inputstr) != repr(''):
        expcalcbot(inputstr)
        inputstr = ''

由于网络环境下运行它的用户并非都是可信任的,比如输入 __import__("os").system("dir") ,会显示当前目录下的所有文件列表;如果恶意输入__import__("os").system("del * /q"),会导致当前目录下的所有文件都被删除了,而这一切没有任何提示。

在 globals 参数中禁止全局命名空间的访问:

def expcalcbot(string):
    try:
        math_fun_list = ["acos", "asin", "atan", "cos", "e", "log", "log10", "pi", "pow", "sin", "sqrt", "tan"]
        math_fun_dict = dict([(k, globals().get(k)) for k in math_fun_list]) # 形成可以访问的函数的字典
        print "your name is", eval(string, {"__builtins__": none}, math_fun_dict)
    except nameerror:
        print "the expression you enter is not valid"

再次进行恶意输入:[c for c in ().__class__.__bases__[0].__subclasses__() if c.__name__ == "quitter"][0](0)()

# ().__class__.__bases__[0].__subclasses__() 用来显示 object 类的所有子类。类 quitter 与 "quit" 功能绑定,因此上面的输入会导致程序退出。

对于有经验的侵入者来说,他可能会有一系列强大的手段,使得 eval 可以解释和调用这些方法,带来更大的破坏。此外,eval() 函数也给程序的调试带来一定困难,要查看 eval() 里面表达式具体的执行过程很难。因此在实际应用过程中如果使用对象不是信任源,应该避免使用 eval,在需要使用 eval 的地方可用安全性更好的ast.literal_eval替代。

使用enumerate()获取序列迭代的索引和值

使用函数 enumerate(),主要是为了解决在循环中获取索引以及对应值的问题。它具有一定的惰性(lazy),每次只在需要的时候才会产生一个(index, item)对。函数签名如下:

enumerate(sequence, start=0)

例子:

# 使用 enumerate() 获取序列迭代的索引和值
li = ['a', 'b', 'c', 'd', 'e']
for i, e in enumerate(li):
    print("index:", i, "element:", e)

区分==与is的适用场景

  • ==:用来检验两个对象的是否相等的。它实际调用内部 __eq__() 方法,因此 a == b 相当于 a.__eq__(b)

  • is:用来比较两个对象在内存中是否拥有同一块内存空间。仅当 x 和 y 是同一个对象的时候才返回 true,x is b 基本相当于 id(x) == id(y)

== 操作符也是可以被重载的,而 is 不能被重载。一般情况下,如果 x is y 为 true , x == y 的值一般也为 true(特殊情况除外,如 nana = float('nan')a is a 为 true,a == a 为 false)。

构建合理的包层次来管理模块

每一个 python 文件都可以看成一个模块(module),使用模块可以增强代码的可维护性和可重用性。

包即是目录,但与普通目录不同,它除了包含常规的 python 文件(也就是模块)以外,还包含一个 __init__.py 文件,同时它允许嵌套

package/__init__.py
    module1.py
    module2.py
    subpackage/__init__.py
        module1.py
        module2.py

包中的模块可以通过"."访问符进行访问,即"包名.模块名"。有以下几种导入方法:

  • 直接导入一个包:

    import package

  • 导入子模块或子包,包嵌套的情况下可以进行嵌套导入:

    from package import module1
    import package.module1
    from package import subpackage
    import package.subpackage
    from package.subpackage import module1
    import package.subpackage.module1
    

__init__.py 的作用:

  • 使包和普通目录区分
  • 可以在该文件中申明模块级别的 import 语句,从而使其变成包级别可见

如果 __init__.py 文件为空,当意图使用 from package import * 将包 package 中所有的模块导入当前名字空间时,并不能使得导入的模块生效,这是因为不同平台间的文件的命名规则不同,python 解释器并不能正确判定模块在对应的平台该如何导入,因此仅仅执行 __init__.py 文件,如果要控制模块的导入,则需要对 __init__.py 文件做修改。

__init__.py 文件还有一个作用就是通过在该文件中定义 __all__ 变量,控制需要导入的子包或者模块。之后再运行 from ... import *,可以看到 __all__ 变量中定义的模块和包被导入当前名字空间。

包的使用能够带来以下便利:

  • 合理组织代码,便于维护和使用
  • 能够有效地避免名称空间冲突

如果模块包含的属性和方法存在同名冲突,使用 import module 可以有效地避免名称冲突。在嵌套的包结构中,每一个模块都以其所在的完整路径作为其前缀,因此,即使名称一样,但由于模块所对应的其前缀不同,就不会产生冲突。

文章首发于公众号【python与算法之路】