欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

荐 通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

程序员文章站 2022-07-10 21:22:48
一、实现网站访问计数器1、线程不安全的做法1.1、代码packagecom.chentongwei.concurrency;importstaticjava.lang.Thread.sleep;/***@Description:*@Projectconcurrency*/publicclassTestCount{&n...

一、实现网站访问计数器

1、线程不安全的做法

1.1、代码

package com.chentongwei.concurrency;

import static java.lang.Thread.sleep;

/**
 * @Description:
 * @Project concurrency
 */
public class TestCount {

    private static int count;

    public void incrCount() {
        count ++;
    }

    public static void main(String[] args) throws InterruptedException {
        TestCount testCount = new TestCount();
        // 开启五个线程
        for (int i = 0; i < 5; i++) {
            new Thread(() -> {
                try {
                    sleep(10);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 每个线程都让count自增100
                for (int j = 0; j < 100; j++) {
                    testCount.incrCount();
                }
            }).start();
        }
        sleep(2000);
        // 正确的情况下会输出500
        System.out.println(count);
    }
}</pre>

1.2、结果

并不一定是500,极大可能小于500。不固定。

1.3、分析

很明显上面那段程序是线程不安全的,为什么线程不安全?因为++操作其实是类似如下的两步骤,如下:

count ++;
||
// 获取count
int temp = count;
// 自增count
count = temp + 1;</pre>

很明显是先获取在自增,那么问题来了,我线程A和线程B都读取到了int temp = count;这一步,然后都进行了自增操作,其实这时候就错了因为这时候count丢了1,并发了。所以导致了线程不安全,结果小于等于500。

2、Synchronized保证线程安全

2.1、代码

package com.chentongwei.concurrency;

import static java.lang.Thread.sleep;

/**
 * @Description:
 * @Project concurrency
 */
public class TestCount {

    private static int count;

    public  void incrCount() {
        count ++;
    }

    public static void main(String[] args) throws InterruptedException {
        TestCount testCount = new TestCount();
        for (int i = 0; i < 5; i++) {
            new Thread(() -> {
                try {
                    sleep(10);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                for (int j = 0; j < 100; j++) {
                    synchronized (TestCount.class) {
                        testCount.incrCount();
                    }
                }
            }).start();
        }
        sleep(2000);
        System.out.println(count);
    }
}</pre>

2.2、结果

500

2.3、分析

没什么可分析的,我用了Java的内置锁Synchronized来保证了线程安全性。加了同步锁之后,count自增的操作变成了原子性操作,所以最终输出一定是500。众所周知性能不好,所以继续往下看替代方案。

3、原子类保证线程安全

3.1、代码

package com.chentongwei.concurrency;

import java.util.concurrent.atomic.AtomicInteger;

import static java.lang.Thread.sleep;

/**
 * @Description:
 * @Project concurrency
 */
public class TestCount {

    // 原子类
    private static AtomicInteger count = new AtomicInteger();

    public  void incrCount() {
        count.getAndIncrement();
    }

    public static void main(String[] args) throws InterruptedException {
        TestCount testCount = new TestCount();
        for (int i = 0; i < 5; i++) {
            new Thread(() -> {
                try {
                    sleep(10);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                for (int j = 0; j < 100; j++) {
                    testCount.incrCount();
                }
            }).start();
        }
        sleep(2000);
        System.out.println(count);
    }
}</pre>

3.2、结果

500

3.3、分析

所谓原子操作类,指的是java.util.concurrent.atomic包下,一系列以Atomic开头的包装类。如AtomicBoolean,AtomicUInteger,AtomicLong。它们分别用于Boolean,Integer,Long类型的原子性操作。每个原子类内部都采取了CAS算法来保证的线程安全性。

二、什么是CAS算法

1、概念

CAS的英文单词Compare and Swap的缩写,翻译过来就是比较并替换。

2、原理

CAS机制中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,才将内存值修改为B,否则什么都不做,最后返回现在的V值。

简单理解为这句话:我认为V的值应该是A,如果是A的话我就把他改成B,如果不是A的话(那就证明被别人修改过了),那我就不修改了,避免多人 同时修改导致数据出错。换句话说:要想修改成功,必须保证A和V中的值是一样的,修改前有个对比的过程。

比如:更新一个变量,只有当变量的预期值(A)和内存地址(V)的实际值相同时,才会将内存地址(V)对应的值修改为B。

我们看如下的原理图:

1、在内存地址V当中,存储着值为10的变量。

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

2、此时线程1想把变量的值增加1,对于线程1来说,旧的预期值A=10,要修改的新值B=11。

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

3、在线程1要提交更新之前,另一个线程2抢先一步,把内存地址V中的变量率先更新成了11。

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

4、线程1开始提交更新,首先进行A和地址V的实际值对比,发现A!=V,提交失败。

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

5、线程1重新获取内存地址V的当前值,并重新计算想要修改的值。此时对线程1来说:A=11,B=12.这个重新尝试的过程称为自旋

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

6、这一次比较幸运,没有其他线程改变地址V的值。线程1进行比较,发现A和地址V的实际值是相等的。

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

7、线程1进行交换,把地址V的值替换为B,也就是12.

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

3、对比Synchronized

从思想上来讲,Synchronized属于悲观锁,悲观的认为程序中的并发情况严重,所以严防死守,高并发情况下效率低下。而CAS属于乐观锁,乐观的认为程序中的并发情况不那么严重,所以让线程不断去重试更新。但实际上Synchronized已经改造了,带有锁升级的功能。效率不亚于cas。

4、CAS缺点

(1)CPU开销可能过大

在并发比较大的时候,若多线程反复尝试更新某个变量,却又一直更新不成功,循环往复,会给CPU带来很大的压力。(因为是个死循环,下面分析底层实现就懂了。)

(2)不能保证代码块的原子性

CAS机制所保证的只是一个变量的原子操作,而不能保证整个代码块的原子性。比如需要保证三个变量共同进行原子性的更新,就不得不使用Synchronized或Lock等机制了。

(3)ABA问题。

下面会单独抽出一块地来详细讲解。这是CAS最大的漏洞。

三、CAS底层实现(Java)

1、概述

要说Java中CAS的案例,那么最属java.util.concurrent.atomic包下的原子类有发言权了。最经典、最简单。

2、讲解

比如我们这里随便找个AtomicInteger来讲解CAS算法底层实现。

public final int incrementAndGet() {
    for (;;) {
        int current = get();
        int next = current + 1;
        if (compareAndSet(current, next))
            return next;
    }
}

private volatile int value; 

public final int get() {
    return value;
}</pre>
  1. 获取当前值
  2. 当前值+1,计算出目标值
  3. 进行CAS操作,如果成功则跳出循环,如果失败则重复上述步骤

如何保证获取的当前值是内存中的最新值?很简单,用volatile关键字来保证(保证线程间的可见性)。

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

compareAndSet方法的实现很简单,只有一行代码。这里涉及到两个重要的对象,一个是unsafe,一个是valueOffset。

什么是unsafe呢?

3、Unsafe

Unsafe是CAS的核心类,Java语言不像C,C++那样可以直接访问底层操作系统,Java无法直接访问底层操作系统,但是JVM为我们提供了一个后门,这个后门就是unsafe。unsafe为我们提供了硬件级别的原子操作

而valueOffset是通过unsafe.objectFiledOffset方法得到,所代表的是AtomicInteger对象value成员变量在内存中的偏移量。我们可以简单的把valueOffset理解为value变量的内存地址。

我们上面说过,CAS机制中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。

而unsafe的compareAndSwapInt方法的参数包括了这三个基本元素:valueOffset参数代表了V,expect参数代表了A,update参数代表了B。

正是unsafe的compareAndSwapInt方法保证了Compare和Swap操作之间的原子性操作。

四、ABA问题

1、演示

线程1准备用CAS将变量的值由A替换为B,在此之前,线程2将变量的值由A替换为C,又由C替换为A。然后线程1执行CAS时发现变量的值仍是A,所以CAS成功,这么看没毛病,但是如果操作的是个链表呢?那就炸了,因为虽然值一样,但是链表的位置不一样了。

例如:

(1)现有一个用单向链表实现的堆栈,栈顶为A,这时线程T1已经知道A.next为B,然后希望用CAS将栈顶替换为B:

head.compareAndSet(A,B);

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

(2)在T1执行上面这条指令(CAS)之前,线程T2介入,将A、B出栈,在push三个D、C、A,如下:

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

(3)此时轮到线程T1执行CAS操作,检测发现栈顶仍为A,所以CAS成功,栈顶变为B,但实际上B.next为null,因为B已经再上一步被移除了,成为了游离态。所以此时的情况变为

荐
                                                        通过实现网站访问计数器带你理解 轻量级锁CAS原理,还学不会算我输!!!

导致了其中堆栈中只有B一个元素,C和D组成的链表不再存在于堆栈中,平白无故就把C、D丢掉了。

以上就是由于ABA问题带来的隐患,各种乐观锁的实现中通常都会用版本戳version来对记录或对象标记,避免并发操作带来的问题,在Java中,AtomicStampedReference也实现了这个作用,它通过包装[E,Integer]的元组来对对象标记版本戳stamp,从而避免ABA问题。

2、生活案例

你和你前任分手后她又回来了,但是你在这期间又和其他女人…,你表面还是你,但是本质的你已经变了。把这个例子带到代码里来就是:

你有个class,里面有个LinkedList属性,这个链表里有你和你前任,你先把它踹了,然后小苍进来跟你…,这时候你前任就回来了,但是这期间链表已经发生了无感知的变化。`

本文地址:https://blog.csdn.net/weixin_47083537/article/details/107354563

相关标签: 算法