支持向量机SVM知识梳理和在sklearn库中的应用
程序员文章站
2022-07-10 20:58:39
线性SVM=线性分类器+最大间隔间隔的形式化描述SVM通过最大化`M`来求解参数`W`和`b`的,目标函数如下拉格朗日乘数法,软间隔:加入容错量非线性SVM:特征空间。常用的核函数 ......
svm发展史
线性svm=线性分类器+最大间隔
间隔(margin):边界的活动范围。the margin of a linear classifier is defined as the width that the boundary could be increased by before hitting a data point.
预备知识
- 线性分类器的分割平面(超平面):
wx+b=0
- 点到超平面的距离:\(m=\frac{ \vert g(x) \vert }{\left\|w\right\| }\),其中\(g(x)=wx+b\)
- svm中正样本定义为g(x)>=1,负样本定义为g(x)<=-1
- svm中wx+b=1或者wx+b=-1的点称为支持向量
间隔的形式化描述
\(m=\frac{2}{\left\|w\right\| }\)
svm通过最大化m
来求解参数w
和b
的,目标函数如下:
求解 :拉格朗日乘数法,偏导为0后回带
在svm中,原问题和对偶问题具有相同的解,w已经求出:\(w=\sum_{i=1}^{l}{\alpha_iy_ix_i}\), 不等式约束,还需要满足kkt条件。若\(\alpha_i>0\),则必有xi为支持向量,即:训练完毕后,最终模型仅和支持向量有关。
b的求解过程如下
一个实例
软间隔:加入容错量
同样采用拉格朗日乘数法求解
ld的区别仅仅体现为\(\alpha_i\)的约束不同。
非线性svm:特征空间
通过映射到高维空间来将线性不可分的问题转换为线性可分的问题。
高维空间向量内积运算复杂度高。以二次型为例,直接计算
\(x_i⋅x_j⇒φ(x_i)⋅φ(x_j)\),直接计算的话,复杂度会成倍增加。
以二次型为例,理解核技巧
通过在低维空间的计算o(m),得到高维空间的结果,不需要知道变换是什么,更不需要变换结果的内积,只需要知道核函数,就可以达到相同的目标。(变换结果的内积)
请看实例,二维空间
常用的核函数
多项式变换中,当d=2时,就是二次型变换。
此时w和b的结果如下:
将\(x_i\)换为\(\phi(x_i)\),将\(\phi(x_i)\cdot \phi(x_j)\)换为\(k(x_i,x_j)\),其余都不变,真的很简洁。
svm在scikit-learn中的应用
- linear svm:\(min\frac{1}{2}\left\|w\right\|^2+c\sum{\zeta^2}\)
linearsvc( penalty='l2', c=1.0,#就是目标函数的c,c越大(eg:1e9),容错空间越小,越接近硬边界的svm(最初的svm,基本不用),c越小(eg:c=0.01),容错空间越大,越接近soft magin. )
- 核函数 svm:
from sklearn.svm import svc
svc( c=1.0, kernel='rbf', degree=3,#多项式核函数的指数d gamma='scale',#高斯基函数中的参数gamma,越大,函数分布越狭窄; gamma越小,决策边界越松弛,当很小时,可以认为趋于无穷大成一条直线了,这时就欠拟合了。gamma取值越大,决策边界越收紧,当很小时,会无限包紧样本点,这时就过拟合了。 )