欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

[算法]:二分法-查找有序数组中一个数字位置

程序员文章站 2022-03-13 18:20:23
...
#问题
二分查找

list.index()无法应对大规模数据的查询,需要用其它方法解决,这里谈的就是二分查找

#思路说明

在查找方面,python中有list.index()的方法。例如:

>>> a=[2,4,1,9,3] #list可以是无序,也可以是有序
>>> a.index(4) #找到后返回该值在list中的位置
1
>>> a.index(5) #如果没有该值,则报错
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: 5 is not in list

这是python中基本的查找方法,虽然简单,但是,如果由于其时间复杂度为O(n),对于大规模的查询恐怕是不足以胜任的。二分查找就是一种替代方法。

二分查找的对象是:有序数组。这点特别需要注意。要把数组排好序先。怎么排序,可以参看我这里多篇排序问题的文章。

基本步骤:

1. 从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
2. 如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
3. 如果在某一步骤数组为空,则代表找不到。

这种搜索算法每一次比较都使搜索范围缩小一半。时间复杂度:O(logn)
# 递归
def binary_search(lst, value, lo, hi):
    if lo > hi:
        return -1
    half = (lo + hi)/2
    if lst[half] == value:
        return half
    elif lst[half] > value:
        return binary_search(lst, value, lo, half-1)
    else:
        return binary_search(lst, value, half+1, hi)


# 循环
def binary_search_while(lst, value):
    lo, hi = 0, len(lst)-1
    while lo <= hi:
        half = (lo + hi)/2
        if lst[half] > value:
            hi = half - 1
        elif lst[half] < value:
            lo = half + 1
        else:
            return half
    return -1

 


对于python,不能忽视其强大的标准库。经查阅,发现标准库中就有一个模块,名为:bisect。


- 模块接受排序后的列表。
- 本模块同样适用于长列表项。因为它就是用二分查找方法实现的,有兴趣可以看其源码(源码是一个很好的二分查找算法的例子,特别是很好地解决了边界条件极端的问题.)
- 关于bisect模块的更多内容,可以参看[官方文档](https://docs.python.org/2/library/bisect.html)

"""Bisection algorithms."""

def insort_right(a, x, lo=0, hi=None):
    """Insert item x in list a, and keep it sorted assuming a is sorted.

    If x is already in a, insert it to the right of the rightmost x.

    Optional args lo (default 0) and hi (default len(a)) bound the
    slice of a to be searched.
    """

    if lo < 0:
        raise ValueError('lo must be non-negative')
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        if x < a[mid]: hi = mid
        else: lo = mid+1
    a.insert(lo, x)

insort = insort_right   # backward compatibility

def bisect_right(a, x, lo=0, hi=None):
    """Return the index where to insert item x in list a, assuming a is sorted.

    The return value i is such that all e in a[:i] have e <= x, and all e in
    a[i:] have e > x.  So if x already appears in the list, a.insert(x) will
    insert just after the rightmost x already there.

    Optional args lo (default 0) and hi (default len(a)) bound the
    slice of a to be searched.
    """

    if lo < 0:
        raise ValueError('lo must be non-negative')
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        if x < a[mid]: hi = mid
        else: lo = mid+1
    return lo

bisect = bisect_right   # backward compatibility

def insort_left(a, x, lo=0, hi=None):
    """Insert item x in list a, and keep it sorted assuming a is sorted.

    If x is already in a, insert it to the left of the leftmost x.

    Optional args lo (default 0) and hi (default len(a)) bound the
    slice of a to be searched.
    """

    if lo < 0:
        raise ValueError('lo must be non-negative')
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        if a[mid] < x: lo = mid+1
        else: hi = mid
    a.insert(lo, x)


def bisect_left(a, x, lo=0, hi=None):
    """Return the index where to insert item x in list a, assuming a is sorted.

    The return value i is such that all e in a[:i] have e < x, and all e in
    a[i:] have e >= x.  So if x already appears in the list, a.insert(x) will
    insert just before the leftmost x already there.

    Optional args lo (default 0) and hi (default len(a)) bound the
    slice of a to be searched.
    """

    if lo < 0:
        raise ValueError('lo must be non-negative')
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        if a[mid] < x: lo = mid+1
        else: hi = mid
    return lo

# Overwrite above definitions with a fast C implementation
try:
    from _bisect import *
except ImportError:
    pass

 参考资料:https://github.com/qiwsir/algorithm