欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

未来,人类食物供应或掌握在人工智能手中

程序员文章站 2022-07-10 13:12:12
真正智能的机器人以及机器学习算法,或许会带来一场绿色革命人类给自己出了个难题。到2050年,人口或许将逼近100亿,但是,地球还是那么大,也就是说,相同的土地面积要养活更多的人。再加上全球变暖、随之而...

未来,人类食物供应或掌握在人工智能手中

真正智能的机器人以及机器学习算法,或许会带来一场绿色革命

人类给自己出了个难题。到2050年,人口或许将逼近100亿,但是,地球还是那么大,也就是说,相同的土地面积要养活更多的人。再加上全球变暖、随之而来的淡水缺乏等等诸多状况,人类还能不能养活自己?这是个大问题。

或许是天意,机器来到了人类身边。真正智能的机器人以及机器学习算法,或许会带来一场绿色革命,让人们在这个日益有限的星球上养活自己。想象一下,可以自动探测干旱图样的卫星,识别并杀死感染疾病的植物的拖拉机,和告诉农民哪种疾病感染作物的人工智能手机应用……

忘了稻草人吧。农业的未来掌握在机器的手中。

数字农业专家

深度学习是一种功能强大的计算方法,程序员并不需要清楚告知计算机做什么,只需训练它识别特定模式。你可以给计算机输入病变以及健康农作物叶子的图片,然后如是标签。算法会通过这些数据,掌握病变以及健康农作物叶子的样子,自己决定新叶子是否健康。

这正是生物学家David Hughes和流行病学家Marcel Salathé对14种感染不同疾病的农作物所做的。他们给一台计算机输入了50,000多张图片,通过自我学习,程序可以识别新输入的照片情况,准确率达99.35%。

这些仍然是人为处理过的图片,这些图片亮度和背景都是统一的。因此对于计算机来说,这不是很难。但是如果从互联网上随便摘取一张病变植物照片,识别的正确率就降到了30%到40%。

结果也不是太糟糕。不过,Hughes和Salathé希望用这款人工智能系统驱动他们的应用PlantVillage。目前,这款应用允许全世界的农民上传自己作物的照片到一个论坛,请专家诊断。为了让人工智能更聪明,他们会继续给系统输入染病作物的图片。Salathé说:“输入照片越来越多,来源各异。这些照片是如何拍摄,时间、地点信息又是如何等等。算法可以自行吸收学习。”

目标不仅仅是排除染病植物,找出病因也很重要。“大部分影响植物生长的疾病都源自生理上的压力,比如钙镁元素不足、太多盐,或温度太高等等。人们经常误认为是细菌或真菌感染。”Hughes 说道。错误的诊断会浪费农民的时间和金钱。将来,人工智能可以帮助农民迅速、准确地找到病因。

找到病因后,人类会夺回控制权——虽然应用也许可以找到问题,但是只有人类专家才能找到一套适合于时间、土地与气候的解决方案。联合国粮食与农业组织认为,对作物管理而言,这种技术是一个有效工具,但是专家才有资格板上钉钉。该组织的一位植物病理学家Fazil Dusunceli说道,这样的电子设备会很受欢迎,但是“最终的农害管理,应该与当地专家们一起决定。”

拖拉机训练者

发展中国家急需农业知识,而发达国家却被杀虫剂和农药淹没了。在美国,农民每年要用掉3.1亿磅除草剂——这还仅仅是在玉米,大豆和棉花田上。并且是“喷洒出去并祈祷农药起作用”的作业方式。与其说是狙击虫害,不如说是地毯式轰炸。

一家叫做Blue River Technology的公司,或许已经想到了解决方案,至少对于生菜而言。它的LettuceBot(生菜机器人)看起来很像拖拉机,但实际上它是一个支持机器学习的机器。

Blue River 宣称,LettuceBot可以一分钟拍摄5,000张幼小的植物的照片,利用算法和机器视觉去识别每株植物是生菜还是杂草,速度快到你难以想象。“这仍在机器视觉和机器学习的计算能力范围内。”深度学习设备Enlitic的创始人Jeremy Howard说,一个图像芯片只需0.02秒,就可以识别出一张图片。

应用的精确度可达四分之一英寸,机器人可以在运行中精确定位每株杂草并喷洒农业。如果看见了一株生菜,判定它长得不健康,也会喷洒农药牺牲掉多余的。如果两株芽长得过近,机器也可以加以区分分别喷洒,而不是误认为一大株植物。

现在,再想想传统方案:不论情况如何,统统给地里喷洒农药。Blue River Technology的Ben Chostne说:“这就像是说,如果旧金山的一小部分人感染了疾病,你的唯一选择就是给城里所有人一片抗生素。病治好了,但是成本太高,没有很好地利用抗生素潜能。”

另一方面,Chostner称,有了LettuceBot农民可以减少90%的农药用量。现在,机器已经被用于市场——Blue River所服务的农田,每年供应的生菜占全美生菜供应量的10%。

未来,人类食物供应或掌握在人工智能手中

一分钟拍摄5,000张幼小的植物的照片,利用算法和机器视觉去识别每株植物是生菜还是杂草

LettuceBot非常的强大,因为它利用机器学习加强了机器人的自身优势:精确性。虽然不能像我们一样奔跑或者操控物体,但是它们细致谨慎,做事前后一致——一个完美的农业狙击手。

处理卫星数据的人工智能

头顶400英里的轨道上,NASA的Landsat卫星正利用空间光谱之外的电磁波段,为我们提供了地球表面调查数据,堪称神奇。对于人类来说,这些信息难以消化,不过对于机器学习算法来说,小菜一碟。

在监视农业种植方面,这些数据极具价值。尤其是发展中国家,当决定是否给农民发放贷款或者给予紧急援助时,*和银行往往面临着数据短缺。在印度的一场干旱期间,不同的地区,旱情也不同。而且在这些地区中,一些农民比其他地区的农民有更好的办法获取水资源。

因此,一家叫做Harvesting的公司正在用深度学习来大规模分析卫星数据,帮助机构能够更有效地分配资金。Harvesting的CEO Ruchit Garg说,“我们的愿望是利用这种技术来区分出这样的农民和村庄,帮助银行或*把钱贷给正确的对象。”他还指出,尽管一个分类分析师可能同时分析10或15个变量,机器学习可以同时处理2,000或更多。

随着地球变暖所引发的气候变化,*面临着紧迫的问题:如何分配资源。一直以来,印度的农业相对具有可预测性。Garg说,“因此,我从我父亲、祖父身上学会如何种植,以及分辨四季。但是,由于剧烈的气候变化,情况已经变化,过去的那套做法不管用了。”

这是新的世界秩序。农民可以接受失败,或者以智能的方式种植农业——用更多的数据,更多的人工智能,以及更多喷洒农药的机器人。