欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P2178 [NOI2015]品酒大会(后缀自动机 线段树)

程序员文章站 2022-07-10 11:58:37
题意 "题目链接" Sol 说一个后缀自动机+线段树的无脑做法 首先建出SAM,然后对parent树进行dp,维护最大次大值,最小次小值 显然一个串能更新答案的区间是$[len_{fa_{x}} + 1, len_x]$,方案数就相当于是从$siz_x$里面选两个,也就是$\frac{siz_x ( ......

题意

题目链接

sol

说一个后缀自动机+线段树的无脑做法

首先建出sam,然后对parent树进行dp,维护最大次大值,最小次小值

显然一个串能更新答案的区间是\([len_{fa_{x}} + 1, len_x]\),方案数就相当于是从\(siz_x\)里面选两个,也就是\(\frac{siz_x (siz_x - 1)}{2}\)

直接拿线段树维护一下,标记永久化一下炒鸡好写~

#include<bits/stdc++.h>
#define int long long 
#define ll long long 
using namespace std;
const int maxn = 1e6 + 10;
const ll inf = 2e18 + 10;
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, a[maxn];
char s[maxn];
int root = 1, tot = 1, las = 1, ch[maxn][26], fa[maxn], len[maxn], rev[maxn];
ll mx[maxn], mx2[maxn], ans[maxn], ans1[maxn], mn[maxn], mn2[maxn], tmp[maxn], siz[maxn];
vector<int> v[maxn];
void insert(int x, int id) {
    int now = ++tot, pre = las; las = now; siz[now] = 1; len[now] = len[pre] + 1; mx[now] = a[id]; mx2[now] = -inf; mn[now] = a[id]; mn2[now] = inf; rev[id] = now;
    for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now;
    if(!pre) {fa[now] = root; return ;}
    int q = ch[pre][x];
    if(len[pre] + 1 == len[q]) fa[now] = q;
    else {
        int nq = ++tot; fa[nq] = fa[q]; len[nq] = len[pre] + 1; 
        memcpy(ch[nq], ch[q], sizeof(ch[q]));
        fa[now] = fa[q] = nq;
        for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nq;
    }
}
void builddag() {
    for(int i = 1; i <= tot; i++) assert(fa[i] != i), v[fa[i]].push_back(i);
}

int rt, node, ls[maxn], rs[maxn], ad[maxn], si[maxn];
ll sum[maxn], tag[maxn];
void build(int &k, int l, int r) {
    if(!k) k = ++node, tag[k] = -inf, si[k] = r - l + 1;
    if(l == r) return ;
    int mid = l + r >> 1;
    build(ls[k], l, mid);
    build(rs[k], mid + 1, r);
}
void intmax(int k, int l, int r, int ql, int qr, ll v) {
    if(ql <= l && r <= qr) {chmax(tag[k], v); return ;  }
    int mid = l + r >> 1;
    if(ql <= mid) intmax(ls[k], l, mid, ql, qr, v);
    if(qr  > mid) intmax(rs[k], mid + 1, r, ql, qr, v);
}
void intadd(int k, int l, int r, int ql, int qr, ll v) {
    if(ql <= l && r <= qr) {sum[k] += v; return ;}
    int mid = l + r >> 1;
    if(ql <= mid) intadd(ls[k], l, mid, ql, qr, v);
    if(qr  > mid) intadd(rs[k], mid + 1, r, ql, qr, v);
}
ll querynum(int k, int l, int r, int pos) {
    if(!k) return 0;
    ll now = sum[k];
    if(l == r || !k) return now;
    int mid = l + r >> 1;
    if(pos <= mid) now += querynum(ls[k], l, mid, pos);
    else now += querynum(rs[k], mid + 1, r, pos);
    return now;
}
ll querymax(int k, int l, int r, int pos) {
    if(!k) return -inf;
    ll now = tag[k];
    if(l == r || !k) return now;
    int mid = l + r >> 1;
    if(pos <= mid) chmax(now, querymax(ls[k], l, mid, pos));
    else chmax(now, querymax(rs[k], mid + 1, r, pos));
    return now;
}
void dfs(int x) {
    for(auto &to : v[x]) {
        dfs(to);
        siz[x] += siz[to];
        if(mx2[to] > mx[x]) chmax(mx2[x], mx[x]), mx[x] = mx2[to];
        else chmax(mx2[x], mx2[to]);
        if(mx[to] > mx[x]) chmax(mx2[x], mx[x]), mx[x] = mx[to];
        else chmax(mx2[x], mx[to]);
        
        if(mn2[to] < mn[x]) chmin(mn2[x], mn[x]), mn[x] = mn2[to];
        else chmin(mn2[x], mn2[to]);
        if(mn[to] < mn[x]) chmin(mn2[x], mn[x]), mn[x] = mn[to];
        else chmin(mn2[x], mn[to]); 
    }
    if(siz[x] > 1 && x != root) {
        intmax(rt, 1, n, len[fa[x]] + 1, len[x], mx[x] * mx2[x]);
        intmax(rt, 1, n, len[fa[x]] + 1, len[x], mn[x] * mn2[x]);
        
        intadd(rt, 1, n, len[fa[x]] + 1, len[x], 1ll * siz[x] * (siz[x] - 1) / 2);
    }
}

signed main() {
    n = read();
    build(rt, 1, n);
    scanf("%s", s + 1);
    reverse(s + 1, s + n + 1);
    for(int i = 1; i <= n; i++) tmp[i] = a[i] = read(), assert(a[i] != 0);
    reverse(a + 1, a + n + 1);
    for(int i = 1; i <= n; i++) insert(s[i] - 'a', i);
    for(int i = 1; i <= tot; i++) {
        ans[i] = -inf;
        if(!mx[i]) mx[i] = -inf;
        if(!mx2[i]) mx2[i] = -inf;
        if(!mn[i]) mn[i] = inf;
        if(!mn2[i]) mn2[i] = inf;   
    }
    builddag();
    dfs(1);
    for(int i = 1; i < n; i++) {
        ans1[i] = querynum(root, 1, n, i);
        ans[i] = querymax(root, 1, n, i);
        
    }
    sort(tmp + 1, tmp + n + 1, greater<int>());
    cout << 1ll * n * (n - 1) / 2 << " " << max(tmp[1] * tmp[2], tmp[n] * tmp[n - 1]) << '\n';
    for(int i = 1; i < n; i++) cout << ans1[i] <<  " " << (ans[i] <= -inf ? 0 : ans[i]) << '\n';
    return 0;
}
/*
2
aa
-100000000 100000000
12
abaabaabaaba
1 -2 3 -4 5 -6 7 -8 9 -10 11 -12
*/