欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

程序员文章站 2022-07-10 11:42:43
Description Input 第一行有两个整数,N和 M,描述方块的数目。 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点;否则表示控制该方块至少需要的志愿者数目。 相邻的整数用 (若干个) 空格隔开,行首行末也可能有多余的空格。 第一行有两个整数,N和 M, ......
Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special Judge
Submit: 2030  Solved: 986
[Submit][Status][Discuss]

Description

BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

Input

第一行有两个整数,N和 M,描述方块的数目。 
接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点;
否则表示控制该方块至少需要的志愿者数目。 相邻的整数用 (若干个) 空格隔开,
行首行末也可能有多余的空格。

Output


由 N + 1行组成。第一行为一个整数,表示你所给出的方案
中安排的志愿者总数目。 
接下来 N行,每行M 个字符,描述方案中相应方块的情况: 
z  ‘_’(下划线)表示该方块没有安排志愿者; 
z  ‘o’(小写英文字母o)表示该方块安排了志愿者; 
z  ‘x’(小写英文字母x)表示该方块是一个景点; 
注:请注意输出格式要求,如果缺少某一行或者某一行的字符数目和要求不
一致(任何一行中,多余的空格都不允许出现) ,都可能导致该测试点不得分。

Sample Input

4 4
0 1 1 0
2 5 5 1
1 5 5 1
0 1 1 0



Sample Output

6
xoox
___o
___o
xoox

HINT

 

 对于100%的数据,N,M,K≤10,其中K为景点的数目。输入的所有整数均在[0,2^16]的范围内

 

Source

 
很明显是斯坦纳树
$f[i][j][sta]$表示$(i,j)$这个位置,与其他景点的连通性为$sta$时的最小花费
转移的时候一种是枚举子集
另一种是spfa判断,
比较套路
 
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int limit = 1050;
const int INF = 1e9;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();}
    return x * f;
}
#define MP(i,j) make_pair(i,j)
#define se second
#define fi first
#define Pair pair<int,int>
int N, M, tot = 0;
int a[12][12], f[12][12][limit];
int xx[5] = {-1, +1, 0, 0};
int yy[5] = {0, 0, -1, +1};
int vis[12][12];
struct PRE {
    int x, y, S;
}Pre[12][12][limit];
queue<Pair>q;
void SPFA(int cur) {
    while(q.size() != 0) {
        Pair p = q.front();q.pop();
        vis[p.fi][p.se] = 0;
        for(int i = 0; i <4; i++) {
            int wx = p.fi + xx[i], wy = p.se + yy[i];
            if(wx < 1 || wx > N || wy < 1 || wy > M) continue;
            if(f[wx][wy][cur] > f[p.fi][p.se][cur] + a[wx][wy]) {
                f[wx][wy][cur] = f[p.fi][p.se][cur] + a[wx][wy];
                Pre[wx][wy][cur] = (PRE){p.fi, p.se, cur};
                if(!vis[wx][wy])
                    vis[wx][wy] = 1, q.push(MP(wx,wy));
            }
        }
    }
}
void dfs(int x, int y, int now) {
    vis[x][y] = 1;
    PRE tmp = Pre[x][y][now];
    if(tmp.x == 0 && tmp.y == 0) return;
    dfs(tmp.x, tmp.y, tmp.S);
    if(tmp.x == x && tmp.y == y) dfs(tmp.x, tmp.y, now - tmp.S);
}
int main() {
    N = read(); M = read();
    memset(f, 0x3f, sizeof(f));
    for(int i = 1; i <= N; i++)
        for(int j = 1; j <= M; j++) {
            a[i][j] = read();
            if(a[i][j] == 0)
                f[i][j][1 << tot] = 0, tot++;
        }
    int limit = (1 << tot) - 1;
    for(int sta = 0; sta <= limit; sta++) {
        for(int i = 1; i<= N; i++)
            for(int j = 1; j <= M;j++) {
                for(int s = sta & (sta - 1); s; s = (s - 1) & sta) {
                    if(f[i][j][s] + f[i][j][sta - s] - a[i][j] < f[i][j][sta])
                        f[i][j][sta] = f[i][j][s] + f[i][j][sta - s] - a[i][j],
                        Pre[i][j][sta] = (PRE){i,j,s};
                }
                if(f[i][j][sta] < INF) q.push(MP(i,j)), vis[i][j] = 1;
            }
        SPFA(sta);
    }
    int ansx, ansy, flag = 0;
    for(int i = 1; i <= N && !flag; i++)
        for(int j = 1; j <= M; j++)
            if(!a[i][j]) 
                {ansx = i, ansy = j; flag = 1; break;}
    printf("%d\n",f[ansx][ansy][limit]); 
    memset(vis, 0, sizeof(vis));
    dfs(ansx, ansy, limit);
    for(int i = 1; i <= N; i++, puts("")) {
        for(int j = 1; j <= M; j++) {
            if(a[i][j] == 0) putchar('x');
            else if(vis[i][j]) putchar('o');
            else putchar('_');            
        } 
    } 
    return 0;
}