欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python使用Zero-Copy和Buffer Protocol实现高性能编程

程序员文章站 2022-07-10 11:34:26
无论你程序是做什么的,它经常都需要处理大量的数据。这些数据大部分表现形式为strings(字符串)。然而,当你对字符串大批量的拷贝,切片和修改操作时是相当低效的。为什么? 让我们假设一个读取二进制数据的大文件示例,然后将部分数据拷贝到另外一个文件。要展示该程序所使用的内存,我们使用 "memory_ ......

无论你程序是做什么的,它经常都需要处理大量的数据。这些数据大部分表现形式为strings(字符串)。然而,当你对字符串大批量的拷贝,切片和修改操作时是相当低效的。为什么?

让我们假设一个读取二进制数据的大文件示例,然后将部分数据拷贝到另外一个文件。要展示该程序所使用的内存,我们使用,一个强大的python包,让我们可以一行一行观察程序所使用的内存。

@profile
def read_random():
    with open("/dev/urandom", "rb") as source:
        content = source.read(1024 * 10000)
        content_to_write = content[1024:]
    print(f"content length: {len(content)}, content to write length {len(content_to_write)}")
    with open("/dev/null", "wb") as target:
        target.write(content_to_write)


if __name__ == "__main__":
    read_random()

使用memory_profiler模块来执行以上程序,输出如下:

$ python -m memory_profiler example.py 
content length: 10240000, content to write length 10238976
filename: example.py

line #    mem usage    increment   line contents
================================================
     1   14.320 mib   14.320 mib   @profile
     2                             def read_random():
     3   14.320 mib    0.000 mib       with open("/dev/urandom", "rb") as source:
     4   24.117 mib    9.797 mib           content = source.read(1024 * 10000)
     5   33.914 mib    9.797 mib           content_to_write = content[1024:]
     6   33.914 mib    0.000 mib       print(f"content length: {len(content)}, content to write length {len(content_to_write)}")
     7   33.914 mib    0.000 mib       with open("/dev/null", "wb") as target:
     8   33.914 mib    0.000 mib           target.write(content_to_write)

我们通过source.read/dev/unrandom加载了10 mb数据。python需要大概需要分配10 mb内存来以字符串存储这个数据。之后的content[1024:]指令越过开头的一个单位的kb数据进行数据拷贝,也分配了大概10 mb。

这里有趣的是在哪里呢,也就是构建content_to_write时10 mb的程序内存增长。切片操作拷贝了除了开头的一个单位的kb其他所有的数据到一个新的字符串对象。

如果处理类似大量的字节数组对象操作那是简直就是灾难。如果你之前写过c语言,在使用memcpy()需要注意点是:在内存使用以及总体性能来说,复制内存很慢。

然而,作为c程序员的你,知道字符串其实就是由字符数组构成,你不非得通过拷贝也能只处理部分字符,通过使用基本的指针运算——只需要确保整个字符串是连续的内存区域。

在python同样提供了buffer protocol实现。buffer protocol定义在pep 3118,描述了使用c语言api实现各种类型的支持,例如字符串。

当一个对象实现了该协议,你就可以使用memoryview类构造一个memoryview对象引用原始内存对象。

>>> s = b"abcdefgh"
>>> view = memoryview(s)
>>> view[1]
98
>>> limited = view[1:3]
>>> limited
<memory at 0x7f6ff2df1108>
>>> bytes(view[1:3])
b'bc'

注意:98是字符b的acsii码

在上面的例子中,在使用memoryview对象的切片操作,同样返回一个memoryview对象。意味着它并没有拷贝任何数据,而是通过引用部分数据实现的。

下面图示解释发生了什么:

Python使用Zero-Copy和Buffer Protocol实现高性能编程

因此,我们可以将之前的程序改造得更加高效。我们需要使用memoryview对象来引用数据,而不是开辟一个新的字符串。

@profile
def read_random():
    with open("/dev/urandom", "rb") as source:
        content = source.read(1024 * 10000)
        content_to_write = memoryview(content)[1024:]
    print(f"content length: {len(content)}, content to write length {len(content_to_write)}")
    with open("/dev/null", "wb") as target:
        target.write(content_to_write)


if __name__ == "__main__":
    read_random()

我们再一次使用memory profiler执行上面程序:

$ python -m memory_profiler example.py 
content length: 10240000, content to write length 10238976
filename: example.py

line #    mem usage    increment   line contents
================================================
     1   14.219 mib   14.219 mib   @profile
     2                             def read_random():
     3   14.219 mib    0.000 mib       with open("/dev/urandom", "rb") as source:
     4   24.016 mib    9.797 mib           content = source.read(1024 * 10000)
     5   24.016 mib    0.000 mib           content_to_write = memoryview(content)[1024:]
     6   24.016 mib    0.000 mib       print(f"content length: {len(content)}, content to write length {len(content_to_write)}")
     7   24.016 mib    0.000 mib       with open("/dev/null", "wb") as target:
     8   24.016 mib    0.000 mib           target.write(content_to_write)

在该程序中,source.read仍然分配了10 mb内存来读取文件内容。然而,使用memoryview来引用部分内容时,并没有额外在分配内存。

相比之前的版本,这里节省了大概50%的内存开销。

该技巧,在处理sockets通信的时候极其有用。当通过socket发送数据时,所有的数据可能并没有在一次调用就发送。

import socket
s = socket.socket(…)
s.connect(…)
# build a bytes object with more than 100 millions times the letter `a`
data = b"a" * (1024 * 100000)
while data:
    sent = s.send(data)
    # remove the first `sent` bytes sent
    data = data[sent:] <2>

使用如下实现,程序一次次拷贝直到所有的数据发出。通过使用memoryview,可以实现zero-copy(零拷贝)方式来完成该工作,具有更高的性能:

import socket
s = socket.socket(…)
s.connect(…)
# build a bytes object with more than 100 millions times the letter `a`
data = b"a" * (1024 * 100000)
mv = memoryview(data)
while mv:
    sent = s.send(mv)
    # build a new memoryview object pointing to the data which remains to be sent
    mv = mv[sent:]

在这里就不会发生任何拷贝,也不会在给data分配了100 mb内存之后再分配多余的内存来进行多次发送了。

目前,我们通过使用memoryview对象实现高效数据写入,但在某些情况下读取也同样适用。在python中大部分 i/o 操作已经实现了buffer protocol机制。在本例中,我们并不需要memoryview对象,我可以请求 i/o 函数写入我们预定义好的对象:

>>> ba = bytearray(8)
>>> ba
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00')
>>> with open("/dev/urandom", "rb") as source:
...     source.readinto(ba)
... 
8
>>> ba
bytearray(b'`m.z\x8d\x0fp\xa1')

通过该机制,我们可以很简单写入到预定义的buffer中(在c语言中,你可能需要多次调用malloc())。

适用memoryview,你甚至可以将数据放入到内存区域任意点:

>>> ba = bytearray(8)
>>> # reference the _bytearray_ from offset 4 to its end
>>> ba_at_4 = memoryview(ba)[4:]
>>> with open("/dev/urandom", "rb") as source:
... # write the content of /dev/urandom from offset 4 to the end of the
... # bytearray, effectively reading 4 bytes only
...     source.readinto(ba_at_4)
... 
4
>>> ba
bytearray(b'\x00\x00\x00\x00\x0b\x19\xae\xb2')

buffer protocol是实现低内存开销的基础,具备很强的性能。虽然python隐藏了所有的内存分配,开发者不需要关系内部是怎么样实现的。

可以再去了解一下array模块和struct模块是如何处理buffer protocol的,zero copy操作是相当高效的。