欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)

程序员文章站 2022-07-09 18:18:16
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。 ......

题目描述

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

输入输出格式

输入格式:

 

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

 

输出格式:

 

输出最小费用

 

输入输出样例

输入样例#1: 复制
5 4
3
4
2
1
4
输出样例#1: 复制
1



单调队列优化DP
具体思路就是列出DP方程
$dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j+L)^2)$
然后证明决策单调性,之后根据得到的公式转移。
推倒过程懒得写了
推荐一篇写的炒鸡详细的博客
http://www.cnblogs.com/MashiroSky/p/5968118.html


#include<cstdio>
#include<cstring>
#define int long long 
const int MAXN=1e5+10,INF=1e8+10;
using namespace std;
inline char nc()
{
    static char buf[MAXN],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin)),p1==p2?EOF:*p1++;
}
inline int read()
{
    char c=nc();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=nc();}
    return x*f;
}
int N,L;
int a[MAXN],sum[MAXN],f[MAXN],dp[MAXN];
int Q[MAXN],l=1,r=1;
double slope(int j,int k)
{
    return (dp[j]-dp[k]+(f[j]+L)*(f[j]+L)-(f[k]+L)*(f[k]+L))/(2.0*(f[j]-f[k]));
}
main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    N=read();L=read();L++;//C=L+1
    for(int i=1;i<=N;i++) a[i]=read(),sum[i]=sum[i-1]+a[i],f[i]=sum[i]+i;
    for(int i=1;i<=N;i++)
    {
        while(l<r&&slope(Q[l],Q[l+1])<=f[i]) l++;
        dp[i]=dp[Q[l]]+(f[i]-L-f[Q[l]])*(f[i]-L-f[Q[l]]);
        while(l<r&&slope(Q[r-1],Q[r])>slope(Q[r],i)) r--;
        Q[++r]=i;
    }
    printf("%lld",dp[N]);
    return 0;
}