PAT 1146 Topological Order(25 分)
1146 Topological Order(25 分)
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to “NOT a topological order”. The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
3 4
Approach
题目大意:给出一个图,再给几组数据,让你判断这几组数据是否符合拓扑排序
思路方法:首先要熟悉拓扑排序的过程,就是每次将入度为零的点放入队列中,由此枚举数据判断此时的点是否入度已为零。
Code
void PrintAnswer(vector<int> &err) {
for (int i = 0; i < err.size(); i++) {
if (i == 0)
printf("%d", err[i]);
else
printf(" %d", err[i]);
}
}
void deindegree(int node,vector<int> &indegree,vector<vector<int>> &graph) {
for (auto &v : graph[node]) {
indegree[v]--;
}
}
int main() {
int N, M;
scanf("%d%d", &N, &M);
vector<vector<int>>graph(N + 1, vector<int>());
vector<int>indegree(N + 1, 0);
for (int i = 0; i < M; i++) {
int a, b;
scanf("%d%d", &a, &b);
indegree[b]++;
graph[a].push_back(b);
}
queue<int>q;
for (int i = 1; i <= N; i++) {
if (indegree[i] == 0)
q.push(i);
}
int K;
scanf("%d", &K);
vector<int>err;
for (int i = 0; i < K; i++) {
vector<int> vindegree(indegree.begin(),indegree.end());
vector<int> nums;
for (int j = 0; j < N; j++) {
int a;
scanf("%d", &a);
nums.push_back(a);
}
for (int j = 0; j < N; j++) {
if (vindegree[nums[j]] == 0) {
deindegree(nums[j], vindegree,graph);
}
else {
err.push_back(i);
break;
}
}
}
PrintAnswer(err);
return 0;
}
上一篇: 6-10 阶乘计算升级版 (20分)
下一篇: 1019 数字黑洞 (20分)
推荐阅读
-
【PAT】B1085 PAT单位排行(25 分)(c++实现)
-
PAT 甲级真题 1006 Sign In and Sign Out (25分) python实现
-
PAT (Advanced Level) 1012 The Best Rank (25 分)
-
PAT甲1122 Hamiltonian Cycle(25 分)
-
[Python](PAT)1122 Hamiltonian Cycle(25 分)
-
PAT (Advanced Level) Practice - 1122 Hamiltonian Cycle(25 分)
-
PAT (Advanced Level) 1009 Product of Polynomials (25 分)
-
【PAT甲级】【1002】 A+B for Polynomials (25分)
-
PAT (Advanced Level) 1006 Sign In and Sign Out (25 分)
-
PAT(A)1025 PAT Ranking (25分)