欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PAT甲级A1146 Topological Order(25 分)

程序员文章站 2022-03-13 13:37:35
...

1146 Topological Order(25 分)

This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

PAT甲级A1146 Topological Order(25 分)

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

Sample Output:

3 4

题意:给定一个图,然后给出n个序列,让你判断给定的这些序列是否为该图的一个拓扑排序,如果不是则输出其序号。

思路1:(最后一个Case超内存)但写法是标准的递归版拓扑排序。定义一个indegree[]存储每个节点的入度,然后根据结点入度使用拓扑排序函数求所有的拓扑序列,由于要把所有的拓扑序列,求出来并保存然后在与给定的序列逐个比较,所以需要在求出每个拓扑序列后,恢复indegree[]和vis[]数组,然后接着求下一个数组。求完后与给定的每个序列逐个比较对应输出即可。

参考代码:

#include<cstdio>
#include<queue>
#include<vector>
using namespace std;
const int maxn=1010;
int n,m,k;
int indegree[maxn],temp_in[maxn];
bool vis[maxn]={false};
vector<int> adj[maxn];
vector<vector<int>> ans;
void TopSort(int u,int d,bool vis[],int indegree[],vector<int> temp){
	temp.push_back(u);
	vis[u]=true;
	if(d==n){
		ans.push_back(temp);
	}
	for(int i=0;i<adj[u].size();i++){
		int v=adj[u][i];
		indegree[v]--;
	}
	for(int i=1;i<=n;i++){
		if(indegree[i]==0&&!vis[i])
			TopSort(i,d+1,vis,indegree,temp);
	}
	for(int i=0;i<adj[u].size();i++){
		int v=adj[u][i];
		indegree[v]++;
	}
	temp.pop_back();
	vis[u]=false;
}
int main()
{
	int u,v;
	scanf("%d%d",&n,&m);
	for(int i=0;i<m;i++){
		scanf("%d%d",&u,&v);
		adj[u].push_back(v);
		indegree[v]++;
	}
	for(int i=1;i<=n;i++){
		if(indegree[i]==0){
			vector<int> temp;
			TopSort(i,1,vis,indegree,temp);
		}
	}
	scanf("%d",&k);
	bool flag=false;//flag=false表示为第一次输出
	for(int i=0;i<k;i++){
		vector<int> temp;
		for(int j=1;j<=n;j++){
			scanf("%d",&u);
			temp.push_back(u);
		}
		int l=0;
		while(l<ans.size()&&ans[l]!=temp) 
			l++;
		if(l==ans.size()&&!flag){
			printf("%d",i);
			flag=true;
		}else if(l==ans.size())
			printf(" %d",i);
	}
	return 0;
}

 

思路2:不求拓扑序列,直接按拓序列性质,对所给序列按从前往后顺序依次判断该点的入度是否为零,若为零则将图中对应的后继定点indegree[]减一,继续求下一顶点,直到所有顶点均符合要求或存在某个当前点的入度不为零,输出。

参考代码:

#include<cstdio>
#include<vector>
using namespace std;
const int maxn=1010;
int n,m,k,u,v,flag=0,indegree[maxn],in[maxn];
vector<int> adj[maxn];
bool isTopSeq(vector<int> t,int in[]){
	for(int i=0;i<t.size();i++){
		int u=t[i];
		if(in[u])
			return false;
		for(int j=0;j<adj[u].size();j++) in[adj[u][j]]--;
	}
	return true;
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=0;i<m;i++){
		scanf("%d%d",&u,&v);
		adj[u].push_back(v);
		indegree[v]++;
	}
	scanf("%d",&k);
	for(int i=0;i<k;i++){
		vector<int> temp(n);
		for(int j=0;j<n;j++){
			scanf("%d",&temp[j]);
		}
		for(int j=1;j<=n;j++)	in[j]=indegree[j];
		if(!isTopSeq(temp,in)){
			printf("%s%d",flag?" ":"",i);
			flag=true;
		}
	}
	return 0;
}

 

 

相关标签: 拓扑排序