欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【MOOC】03-树3 Tree Traversals Again (25分)

程序员文章站 2022-07-08 17:56:47
...

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
【MOOC】03-树3 Tree Traversals Again (25分)

Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.

Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop

Sample Output:

3 4 2 6 5 1

通过观察可以发现,该题实际上是给出二叉树的前序和中序遍历,然后输出该二叉树的后序遍历。测试样例一直过不去,后来发现是n-i-1,不是n-i+1,注意每次递归时下标的变化。
说明:bef代表before(前序起始),mid代表in(中序起始),aft代表after(后序起始)。pre为前序遍历,in为中序遍历,post为后序遍历
#include <iostream> 
#include <stack> 
using namespace std;

int pre[35],in[35],post[35];

void order(int bef,int mid,int aft,int n){
	if(n<1)
		return;
	if(n==1)//递归终止条件
		post[aft] = pre[bef];
	else{
		int tmp = pre[bef];
		post[aft+n-1] = tmp;
		int i;
		for(i = 0;i<n;i++){
			if(in[mid+i]==tmp)
				break;
		}
		order(bef+1,mid,aft,i);
		order(bef+i+1,mid+i+1,aft+i,n-i-1);
	}
}

void print(int n){
	if(n<1)
		return;
	cout << post[0];
	for(int i = 1;i<n;i++)
		cout << " " << post[i];
}

int main(){
	int n,x,m;
	cin >> n;
	stack<int> s;
	int k = 0,p = 0;
	string op;
	//注意是2*n,因为n个结点的中序遍历对应2*n次出栈和入栈
	for(int i = 0;i<2*n;i++){
		cin >> op;
		if(op=="Push"){
			cin >> x;
			pre[k++] = x;
			s.push(x);
		}
		else if(op=="Pop"&&!s.empty()){
			m = s.top();
			s.pop();
			in[p++] = m;
		}
	}
	order(0,0,0,n);
	print(n);
	return 0;
}