欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

总结一次C++ 程序优化历程

程序员文章站 2022-07-08 08:43:00
近期用到了一位师兄写的c++程序,总体功能良好。使用不同的数据测试,发现了一个明显的缺点:大数据量下,预处理过程耗时很长。中科院的某计算集群,普通队列中的程序运行时间不能超过6个小时。而手上这套程序,...

近期用到了一位师兄写的c++程序,总体功能良好。使用不同的数据测试,发现了一个明显的缺点:大数据量下,预处理过程耗时很长。中科院的某计算集群,普通队列中的程序运行时间不能超过6个小时。而手上这套程序,大数据量下预处理就花了不止六个小时,结果当然是还没开始就被结束了。

和天河二号的工作人员联系,确认没有执行时间限制。于是开通了天河二号的账号,把程序扔上去跑。执行大数据量时,程序莫名被kill。询问技术支持,得知是内存耗尽,建议每个节点的进程数少一点。如此折腾了两次,大数据量的例子没跑通,大部分时间都费在预处理上,然后程序崩了,又要调整参数重新再来。

耗时长,最多是多花点机时,问题不大。但是没跑通的情况下每次要等五六个小时,然后才知道能否运行,测试然后反馈的过程太低效。忍无可忍,就开始进行优化吧!

第一步,找出耗时的点。原来的程序输出日志用的cout,没有附带时间,不能通过日志发现耗时的点。为了找出性能关键点,第一步是改进log,在输出中加上时间。写了一个log类,替换掉cout,程序的输出中就带上时间了:

#include "../include/log.hpp"

#include 
#include 
#include 
#include 

using namespace std;

namespace tlanyan {

 string log::datetimeformat = "%f %t";

 log::log()
 {
 }

 void log::info(const char* message) {
  cout << getcurrenttime() << " [info] " << message << endl;
 }

 void log::debug(const char* message) {
#if debug
  cout << getcurrenttime() << " [debug] " << message;
#endif;
 }

 const char* log::getcurrenttime()
 {
  //locale::global(locale("zh_cn.utf8"));
  time_t t = time(null);
  char mbstr[512];
  if (strftime(mbstr, sizeof(mbstr), log::datetimeformat.c_str(), localtime(&t))) {
   return mbstr;
  }
  
  cerr << "获取或格式化时间错误!" << endl;

  exit(1);
 }

 log::~log()
 {
 }
}

// 调用示例:
log::info("program begins...");

通过查看log,定位到了耗时长的过程。

  • 第一步,目测程序源代码,找出问题所在。该段代码比较好理解,主要是进行数据初始化和打标签。程序中规中矩,都是操控内存中的数组,没有磁盘、网络、进程通信等耗时调用。审查代码中发现第一个问题:内存重分配。程序声明了vector,没有指定大小,后续代码中使用push_back对数组的每一项进行赋值。内存分配和数据拷贝的代价是很大的,这应该是一个性能点。修改代码,声明时指定数组大小。编译并运行程序,结果表明省下了30%的耗时。
  • 第二步,统计代码的工作量。耗时过程的初始化数据量,大概是整个数据量的10%,就算其中内嵌了两层循环,也不应该耗时如此多。为了查看是否有额外工作量,加入了计数器。运行结果显示,该段函数的计算量不大,耗时长应该有其他的原因。
  • 第三步,根据经验判断是缓存失效导致。第一反应是用valgrind查看缓存命中,但valgrind模拟运行的效率太差,几个小时后kill掉放弃了。目测程序源码,发现很多数据都是从全局内存读取,没有充分利用缓存。修改代码,使用局部变量缓存全局数据,接下来代码中的数据使用缓存数据。经过测试,效果非常明显,提升了50%的效率。
  • 第四步,查找其他性能热点。经过几次小的调优测试,发现一些全局内存访问不可避免(随机访问,无法利用缓存),按照目前的方式难以继续优化。要大幅降低耗时需要重写算法,目前无法保证对算法和程序意图十分了解,遂暂时作罢。

优化前后的结果对比:中等数据规模下,耗时从8'43"降到3'25";大数据量下,耗时从4h38'44"降到1h49'21"(注:使用自己的机器测试,cpu主频3.46ghz,比中科院和天河二号集群的cpu主频都要高,所以耗时短)。从数据看出,效果还是很明显的。

以上就是c++ 程序优化历程总结的详细内容,更多关于c++ 程序优化的资料请关注其它相关文章!

相关标签: c++ 程序 优化