欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

Ubuntu深度学习环境搭建 tensorflow+pytorch

程序员文章站 2022-07-07 23:54:16
目前电脑配置:Ubuntu 16.04 + GTX1080显卡 配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择。尤其是今天发现conda install -c menpo opencv3 一句命令就可以顺畅的安装上opencv,之前自己装的时候也遇到了很多错误。conda ......

目前电脑配置:Ubuntu 16.04 + GTX1080显卡

配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择。尤其是今天发现conda install -c menpo opencv3 一句命令就可以顺畅的安装上opencv,之前自己装的时候也遇到了很多错误。conda 安装 Tensorflow 和 Pytorch两种框架也是非常方便的,对于不擅长源码编译的我是最佳选择没错了。

所以大致流程就是:安装显卡驱动——安装CUDA 8.0——安装cuDNN——安装miniconda——安装各种计算包

命令如下:

安装驱动

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt-get update

sudo apt-get install nvidia-367

sudo apt-get install mesa-common-dev

sudo apt-get install freeglut3-dev

重启系统让GTX1080显卡驱动生效

 

下载cuda 8.0 run文件

sudo sh cuda_8.0.61_375.26_linux.run

q快进跳过,提示是否安装xxxx选择n

配置环境变量至~/.bashrc

export PATH=/usr/local/cuda-8.0/bin/:$PATH

export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64"

 

安装cuDNN比较简单,解压后把相应的文件拷贝到对应的CUDA目录下即可

sudo cp cudnn.h /usr/local/cuda/include/  #复制头文件

sudo cp lib* /usr/local/cuda/lib64/  #复制动态链接库

sudo rm -rf libcudnn.so libcudnn.so.6           #删除原有动态文件

sudo ln -s libcudnn.so.6.0.21 libcudnn.so.6     #生成软链接

sudo ln -s libcudnn.so.6 libcudnn.so            #生成软链接

 

安装miniconda

配置清华源

下载miniconda(python3.6)

bash Miniconda3-latest-Linux-x86_64.sh

安装tensorflow-gpu版

conda install -y  tensorflow-gpu==1.4.1

pytorch官网安装很简单就不写了