高斯密度与3西格玛检验
程序员文章站
2022-07-07 19:31:11
import numpy as npimport matplotlib.pyplot as pltdef normal_distribution1(mu=0,sigma=1,space=1000): x = np.linspace(mu-(3*sigma-(-3*sigma)),mu+(3*sigma-(-3*sigma)),space) return 1/(np.sqrt(2*np.pi) * sigma) * np.exp(-1*((x-mu)**2)/(2*(sigma**2)...
import numpy as np
import matplotlib.pyplot as plt
def normal_distribution1(mu=0,sigma=1,space=1000):
x = np.linspace(mu-(3*sigma-(-3*sigma)),mu+(3*sigma-(-3*sigma)),space)
return 1/(np.sqrt(2*np.pi) * sigma) * np.exp(-1*((x-mu)**2)/(2*(sigma**2)))
def three_sigm_criteria(normalx):
mu = normalx.mean()
std = normalx.std()
def check_sigm_n(n):
tmp1 = mu-std <= normalx
n1 = tmp1.size
tmp2 = normalx[tmp1]<=(mu+n*std)
n2 = tmp2.size
return tmp2.dot(np.ones(n2))/n2
return {"{}{}".format("sigm",i):(check_sigm_n(i)>v,check_sigm_n(i)) for i,v in zip(range(1,4),(0.6827,0.9545,0.9973))}
three_sigm_criteria(normal_distribution2(0,1))
本文地址:https://blog.csdn.net/weixin_43069769/article/details/107154789
推荐阅读