欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python中pandas对多列进行分组统计的实现

程序员文章站 2022-07-07 17:40:03
使用groupby([ ]).size()统计的结果,值相同的字段值会不显示如上图所示,第一个空着的行是982499 7 3388 1,因为此行与前面一行的这两个字段值是一样的,所以不显示。第二个空着...

使用groupby([ ]).size()统计的结果,值相同的字段值会不显示

python中pandas对多列进行分组统计的实现

如上图所示,第一个空着的行是982499 7 3388 1,因为此行与前面一行的这两个字段值是一样的,所以不显示。第二个空着的行是390192 22 4278 1,因为此行与前面一行的第一个字段值是一样的,所以不显示。这样的展示方式更直观,但对于刚用的人,可能会让其以为是缺失值。

如果还不明白可以看下面的全部数据及操作。

import pandas as pd
res6 = pd.read_csv('test.csv')
res6.shape
(12, 3)
res6.columns
index(['user_id', 'cate', 'shop_id'], dtype='object')
res6.info()
<class 'pandas.core.frame.dataframe'>
rangeindex: 12 entries, 0 to 11
data columns (total 3 columns):
user_id    12 non-null int64
cate       12 non-null int64
shop_id    12 non-null int64
dtypes: int64(3)
memory usage: 368.0 bytes
res6.describe()

user_id cate shop_id
count 1.200000e+01 12.000000 12.000000
mean 6.468688e+05 10.666667 3594.000000
std 3.988181e+05 6.665151 373.271775
min 2.421410e+05 7.000000 3388.000000
25% 3.901920e+05 7.000000 3388.000000
50% 4.938730e+05 7.000000 3388.000000
75% 9.824990e+05 10.250000 3586.250000
max 1.558165e+06 23.000000 4278.000000
res6

user_id cate shop_id
0 390192 20 4178
1 390192 23 4179
2 390192 22 4278
3 1021819 7 3388
4 242141 7 3388
5 283284 7 3388
6 1558165 7 3388
7 533696 7 3388
8 982499 7 3388
9 493873 7 3388
10 493873 7 3388
11 982499 7 3389
res6['user_id'].value_counts()

390192     3
982499     2
493873     2
242141     1
1021819    1
533696     1
1558165    1
283284     1
name: user_id, dtype: int64
res6.groupby(['user_id']).size().sort_values(ascending=false)

user_id
390192     3
982499     2
493873     2
1558165    1
1021819    1
533696     1
283284     1
242141     1
dtype: int64

res6.groupby(['user_id', 'cate']).size().sort_values(ascending=false)

user_id  cate
982499   7       2
493873   7       2
1558165  7       1
1021819  7       1
533696   7       1
390192   23      1
         22      1
         20      1
283284   7       1
242141   7       1
dtype: int64
res6_test = res6.groupby(['user_id', 'cate', 'shop_id']).size().sort_values(ascending=false)
res6_test
user_id  cate  shop_id
493873   7     3388       2
1558165  7     3388       1
1021819  7     3388       1
982499   7     3389       1
               3388       1
533696   7     3388       1
390192   23    4179       1
         22    4278       1
         20    4178       1
283284   7     3388       1
242141   7     3388       1
dtype: int64

到此这篇关于python中pandas对多列进行分组统计的实现的文章就介绍到这了,更多相关pandas多列分组统计内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!